

Sharad Kumar Dubey1*, Dr. Rajeev Yadav2

w
w

w
.i
g

n
it

e
d

.i
n

110

 Journal of Advances in Science and Technology
Vol. 17, Issue No. 1, March-2020, ISSN 2230-9659

A Study of Software Reliability Growth Models

Sharad Kumar Dubey1*, Dr. Rajeev Yadav2

1
 Research Scholar, Shri Krishna University, Chhatarpur M.P.

2
 Professor, Shri Krishna University, Chhatarpur M.P.

Abstract - The main objective is to present a classification of reliability models that would be useful in
determining which of the existing model to use in given software development environment in this study
importance is given on comparison of existing software reliability models. The analytical models are mostly
useful in estimating and monitoring reliability. The models can help software testing/debugging managers
to make predictions about the anticipated future reliability of software under growth and the study in which
discussed about summary of NHPP based continuous time software reliability growth models, NHPP based
software reliability growth models , development history of software reliability growth model, software
reliability models classification.

Keyword - software, models

- X -

INTRODUCTION

Software reliability is a critical component of computer
system availability, so it is important that Tandem's
customers experience a small number of software
failures in their production environments. Software
reliability growth models can be used as an indication
of the number of failures that may be encountered after
the software has shipped and thus as an indication of
whether the software is ready to ship. These models
use system test data to predict the number of defects
remaining in the software. Software reliability growth
models have been applied to portions of several
releases at Tandem over the past few years. This
experimental research has provided some insights into
these models and their utility. The utility of a software
reliability growth model is related to its stability and
predictive ability. Stability means that the model
parameters should not significantly change as new
data is added. Predictive ability means that the number
of remaining defects predicted by the model should be
close to the number found in field use. [1]

Reliability along with reliability, flexibility, efficiency,
serviceability, capability, installation capacity,
maintenance capacity and documentation are an
essential feature of software quality. The software
reliability is described as "the possibility of failure-free
operation of software over a specified period of time in
a specified setting" according to ANSI (American
National Standards Institute). Computer Software
Trustworthiness is difficult to obtain since software is
also highly technical. While it's impossible to achieve a
certain degree of reliability with all extremely
complicated structures, like applications, device
engineers prefer to move complications through their
software layer, with the quick growth of systems size
and simple to do so with a software update. Although

software complexity is inversely associated with
software stability, it is directly linked to other major
software quality variables, especially functionality,
capacity etc. These functionalities serve to make the
app more complicated.[2]

Software Reliability Models Classification

The Reliability Model for Software Reliability
(SRGM) is the instrument used in objective software
evaluation, test status, time scheduling, and
reliability improvements monitoring. In the last two
decades, a range of software reliability models have
been established. The rest of these are historical
evidence obtained during the examination phase
dependent on loss. These models were used to
assess program consistency and potential
trustworthiness forecasts. They were often seen in
several management decision-making issues during
the research process. But neither of these models
may say that they are the best and so more study is
needed. This segment provides a short overview of
various modeling approaches.[3]

(a) Classification Schema

The versions are largely known as black boxes
(Single System) and White boxes (Software for Multi
Components). The black box models are further
divided into Inter Failure Periods, Failure Count, and
Static Models. Markov also presupposes this
framework which correlates with the Failure Count
and the Inter Failure Period Modelling. The
Bayesian model may be generalized to include all
existing models. We estimate models using
Bayesian techniques if the model is Bayesian. White
box versions are the models for modular device
applications that take into consideration the system

Sharad Kumar Dubey1*, Dr. Rajeev Yadav2

w
w

w
.i
g

n
it

e
d

.i
n

111

 A Study of Software Reliability Growth Models

design. The models for the white box are commonly
categorized in state, path-based and additive models.
Continual Time Markov Chains (CTMC), Discrete Time
Markov Chain (DTMC) and Smi-Markov models are all
classified in the State Based Scheme. All of these
model Markovs collapse either into Markov chain class
absorbent or irreducible. Absorption style implies
terminating program, and the operating system
constantly consists of an irreducible chai.[4]

(b) Single System Software

The structure of the model is not taken into account
while estimating the dependability of the software
system in this approach, which treats the whole
programme as a single monolithic system. Reliability is
based purely on the past failures of the product.
Models like Goel-reliability Okumoto's estimate are
popular. Both the Goel and Okumoto (1979) as well as
the models.[5] Because these models do not take into
consideration the structure of software, for example,
they are not as accurate. It is common to predict the
behavior of single-system software failures using the
Software Reliability Growth Model and classify them
according to the time elapsed between failed
operations and the number of failed operations.

(c) Failure Rate Models

The most important parameter in these models is the
period between failures. As more flaws are discovered
and fixed, it is predicted that the time between failures
will grow. Because inter failure times are unpredictable
and prone to statistical fluctuations, this may not
always be the case. It is impossible to decrease
mission time's dependability function in any way. This
shows that the software's credibility has risen.[6]

(d) Markovian Models

To describe the failure process in terms of a markov
chain is known as a Markovian model. Depending on
the amount of defects still present or problems
previously eliminated, the software might be in a variety
of states at any one moment. There are two factors that
influence the likelihood of a transition: the software's
present state and its transition probability. The
exponential distribution of failures in the Markovian
process is a result of its memory less nature. As a
result of the well-developed idea of hardware
dependability, several efforts have been made to build
Markovian models. [7]

(e) Models based on Bayesian Analysis

The unknown parameters of the models are estimated
using the least squares approach or the maximum
likelihood method in the preceding two categories (later
in this chapter both these methods are briefly
discussed). However, the Bayesian analysis method is
employed to estimate the models' unknown parameters
in this category. This method makes it easier to utilize
data gathered throughout the development of

comparable projects. Given this data, it is reasonable
to infer that the model's parameters will follow some
kind of distribution (known as priori distribution). A
posterior distribution may be calculated from the
software test results based on the a priori distribution,
which then represents the failure phenomena. [8]

(f) Static Models

Only if all failure data is accessible can these models
be used to assess software dependability. These
models were created at the beginning of the
development of the dependability model and are now
seldom used since they cannot take into account the
software structure.

(g) The Input Domain and Fault Seeding Models

It is common in fault seeding models to seed the
programme with a predetermined number of flaws.
Finally, the programme is put through its paces.
Inherent and seeded flaws were found in the
observed bugs. Maximum likelihood estimate and
combinatory are used to find the inherent and
seeded flaws in the programme, and the resulting
number of flaws is then determined. Seeded faults
and intrinsic defects must have equal detection
probabilities in order for this strategy to work.
Getting there is a challenge. An input distribution is
used to produce a collection of test cases in an input
domain-based model. From the number of test
failures seen during symbolic or physical execution
of the sampled test cases, the reliability metric is
derived. The representative input area is used to
choose the test cases, which are then run and the
results are recorded. Statistical methods may be
used to assess the likelihood of success. The input
distribution (operational profile) is notoriously difficult
to predict; typically, the input distribution is derived
from the many software routes.[9]

(h) Software Metrics Models

In this class of models, the fault content in the
software is correlated to the length, complexity, and
volume of the programme. Because these models
are based on actual evidence, their output is highly
reliant on the particulars of the software
development process, which may differ from project
to project.

(i) Multi Component Models

Models like Multi-Component White Box take into
account the system's Software Architecture and its
interactions with its many subsystems. Component-
based software is modeled using white box models.
It is the goal of such models to clearly reflect the
testing methodology and the software architecture
utilized throughout the testing phase. [10]

(j) State Based Models

Sharad Kumar Dubey1*, Dr. Rajeev Yadav2

w
w

w
.i
g

n
it

e
d

.i
n

112

 Journal of Advances in Science and Technology
Vol. 17, Issue No. 1, March-2020, ISSN 2230-9659

It is assumed in architecture-based models that a
component failure will lead to a system failure in the
long run. Software components in State Based Models
need a utilization factor, as opposed to hardware
components, which are constantly in use.

(k) Composite-Hierarchical Approach

Based on the solution technique, the State Based
Models are further subdivided into composite and
hierarchical. The architectural model is combined with
the failure model and then solved for reliability
prediction using the composite approach. As a result, it
is possible to estimate dependability of architecture by
combining a failure model with an architecture model
solution.[11]

(L) Path Based Models

Like State-Based Models, Path-Based Models take into
account the components and interfaces that make up
software architecture. Experimental or algorithmic
methods are used to discover the various routes across
the system. The dependability of a route is the sum of
the reliabilities of each of its components. It is the
average of the path reliabilities that make up a
system's dependability. Infinite loops in a route may be
accounted for using state-based models, while path-
based models end the loop at one or the path's
average execution time. [12]

(m) Additive Models

Each component's dependability is modeled using the
NHPP in addition to the software testing phase. System
failure rate is NHPP, which means that the cumulative
number of failures and their intensity functions are
sums of the function of each component. The
architecture of the programme is not considered in the
additive model. Song, Kwang& Changcreated an
architectural model based on additive geometry.
Markovian assumption of exponential failure and repair
durations is relaxed in a restricted way by Semi Markov
and Markov regenerative models. There is a state
space explosion issue that affects them as well In
contrast to analytical models, discrete-event simulation
is an intriguing option since it can capture a
comprehensive system structure and assist the
investigation of many elements such as reliability
growth and various repair procedures. It's a simple
issue that all software development teams must
answer: when to cease testing and release the product,
whether the software is a single component or a multi-
component application.

NHPP Based Software Reliability Growth Models

The NHPP models have the anticipated amount of
defects/fails. For the definition of the behavior of a
device over time, stochastic processes are used.
Stochastic systems are of two major types: continuous
and discrete. Among discrete methods, reliability
engineering counting processes are commonly used to

characterize events in time (e.g., failures, number of
perfect repairs, etc). A Poisson method is the shortest
counting procedure. In reliability engineering they are
particularly important as a general class of the well-
developed stochastic process model in describing
failure processes which have certain patterns, like
reliability growth and decline. Thus, the usage of NHPP
models is conveniently enforced for device usability
research. The models show the predicted amount of
defects/fails at a certain moment. Each SRGM is
focused on a variety of assumptions that are
appropriate for a given research setting. The
abundance of SRGM is causing the selection dilemma.
In a model collection, the most relevant parameter is
the feasibility and the importance for the actual test
setting of model assumptions. In the presence of
several SRGMs, the issue in model selection is a
repetitive activity. In addition, two additional main
parameters are the success of a model in terms of its
capacity to recreate previous failure data and to
forecast the future of the failure observation phase.[13]

Summary of NHPP Based Continuous Time
Software Reliability Growth Models

A considerable number of continuous time models in
the literature have been created to track the phase
of elimination of errors and to calculate and forecast
information systems' reliability. The association
between the test period and the related amount of
deleted errors was observed during the testing
stage either exponentially or S-shaped. Another
type of models is accessible, known as versatile
models.

These models will show both the exponential and
the S-shaped phenomena of failure progression,
depending on their parameter values. Any of the
well-known styles are below.[14]

 Model due to Goel and Okumoto (1979)
(purely Exponential)

 Model due to Yamada, Ohba and Osaki
(1983) (purely S-shaped)

 Model due to Ohba (1984) (Flexible)

 Model due to Bittanti at al. (1998) (Flexible)

 Model due to Kapur and Garg (1992)
(Flexible)

 Generalized SRGM due to Kapur, Younes
and Agarwala (1995) (Model for fault of
different severity)

Development History of Software Reliability
Growth Model

Software reliability is an important branch of
software engineering and a new technology. In
1985, the TC56 Technical Committee of the

Sharad Kumar Dubey1*, Dr. Rajeev Yadav2

w
w

w
.i
g

n
it

e
d

.i
n

113

 A Study of Software Reliability Growth Models

International Electro technical Commission established
the Software Reliability Working Group and began to
develop standards for software reliability. Software
reliability has grown considerably over the next 20
years. An important branch of software reliability is the
study of software reliability evaluation. Data through
software reliability evaluation can better control
resources, enable software to be distributed on time,
and meet user reliability standards for software,
reducing costs and increasing revenue. In the past 20
years, a large number of software reliability growth
models have been proposed. The non-Homogeneous
Poisson Process (NHPP) software reliability growth
model is the most influential one in the reliability growth
model. [15]Researcherfirst proposed the software
reliability growth model (JM model). In 1972, Shooman
proposed a software reliability mathematical model
similar to the JM model. Musa gave his model in 1975.
The time he discussed was divided into tests. The
processor time required for the software execution and
the software execution time for the official run after the
test. After a tedious derivation, the relationship
between the current MTTF and the execution time
exponentially increases, and the relationship between
the number of faults found and the execution time are
given. In, Goel and Okumoto proposed an improved
model of the J-M model, the Goel-Okumoto (G-O)
model, which is also the most classic NHPP model. In
1983, Yamada and Osaki proposed a delayed S-
shaped software reliability growth model. TE (testing-
effort) appeared in the SRGM study in 1986, but it was
not until the mid-1990s that the combination of the two
was not deep. In the 21st century, various types of TE
began to appear widely in SRGM. It becomes the norm
to make the cost of integrating test resources into
modeling. So far, hundreds of software reliability
growth models have been proposed.

CONCLUSION

Software reliability is a measuring technique for defects
that causes software failures in which software
behavior is different from the specified behavior in a
defined environment with fixed time. In this paper,
various software reliability models are reviewed. Above
analytical models are primarily useful in estimating and
monitoring and it is viewed as a measure of estimation
of software reliability and to enhance the quality of
software.

REFERENCE

1. Wu, Y. P., Q. P. Hu, M. Xie& S. H. Ng, 2007.
Modeling and analysis of software fault detection
and correction process by considering time
dependency. IEEE Transaction on Reliability,
Volume 56 (4), p.629–642.

2. Xia, G., Zeephongsekul, P. & Kumar, S., 1992.
Optimal software release policies for models
incorporating learning in testing. Asia Pacific
Journal of Operational Research, Volume 9, pp.
221-234.

3. Xia, G., Zeephongsekul, P. & Kumar, S., 1993.
Optimal software release policy with a learning
factor for imperfect debugging. Microelectron.
Reliab., p. 81–86.

4. Xie, M., 1991. Software Reliability Modelling. :
World Scientific.

5. Xie, M., 2000. Software reliability models—Past,
present and future. Recent Advances in Reliability
Theory: Methodology, Practice, and Inference, p.
325–340.

6. Xie, M., Zhao, M. &Schneidewind, T., 1992.
Software Reliability Model Revisited. ,
Conference Proceedings, IEEE Computer Society
Press, pp. 184-192.

7. Yamada, S., 2000. Software reliability models-
past, present and future. Recent Advances in
Reliability Theory: Methodology, Practice and
Inference, pp. 323-340.

8. Yamada, S., Hishitani, J. & Osaki, S., 1991.
Test-effort dependent software reliability
measurement. International Journal of Systems
and software, pp. 73-83.

9. Yamada, S., Hishitani, J. & Osaki, S., 1993.
Software reliability growth model with Weibull
Testing effort: a model and application. IEEE
Transactions on Reliability, pp. 100-105.

10. Yamada, S., Ohba, M. & Osaki, S., 1983a. S-
shaped reliability growth modeling for software
error detection. IEEE Transactions on
Reliability, p. 475–484.

11. Yamada, S. &Ohtera, H., 1990. Software
reliability growth models for testing effort
control. Eur. J. Oper. Res., p. 343–349.

12. Yamada, S., Ohtera, H. &Narihisa, H., 1986.
Software reliability growth models with testing-
effort. IEEE Trans. Reliab., Volume R-35, (1),
p. 19–23.

13. Yamada, S. & Osaki, S., 1985a. Discrete
Software reliability growth models. Applied
Stochastic models and data analysis, Volume
1, pp. 65-77.

14. Yamada, S. & Osaki, S., 1985b. Software
reliability growth modeling: Models and
applications. IEEE Trans. Software Eng.,
Volume SE-11, p. 1431–1437.

15. Yamada, S., Tokuno, K. & Osaki, S., 1992a.
Imperfect debugging models with fault
introduction rate for software reliability
assessment. Int‘l J. System Science, vol 23(no.
12).

Sharad Kumar Dubey1*, Dr. Rajeev Yadav2

w
w

w
.i
g

n
it

e
d

.i
n

114

 Journal of Advances in Science and Technology
Vol. 17, Issue No. 1, March-2020, ISSN 2230-9659

16. Yang, B. &Xie, M., 2000. A study of operational

and testing reliability in software reliability
analysis. ,Reliability Engineering and System
Safety, Volume vol. 70, p. 323–329.

17. Yang, M. C. K. & Chao, A., 1995. Reliability-
Estimation & Stopping-Rules for Software Testing,
Based on Repeated Appearances of Bugs. IEEE
TRANSACTIONS ON RELIABILITY, VOL. 44(NO.
2).

18. Zeephongsekul, P., Xia, C. & Kumar, S., 1994. A
software reliability growth model primary errors
generating secondary errors under imperfect
debugging. IEEE Trans. Reliab., Volume R-43,
(3), p. 408–413.

19. Zhang, N., Cui, G. & Liu, H., 2010. A Stochastic
Software Reliability Growth Model with Learning
and Change-point. Yichang, China, Proceedings
of 2010 Conference on Dependable Computing
(CDC‘2010).

20. Goel, A. L. &Okumoto, K., 1979. Time-dependent
error-detection rate model for software and other
performance measures. IEEE Transactions on
Reliability, Volume vol. 28, p. 206–211

Corresponding Author

Sharad Kumar Dubey*

Research Scholar, Shri Krishna University,
Chhatarpur M.P.

