

Sharad Kumar Dubey1*, Dr. Rajeev Yadav2

w
w

w
.i
g

n
it

e
d

.i
n

107

 Journal of Advances in Science and Technology
Vol. 18, Issue No. 2, September–2021, ISSN 2230-9659

A Study of Certain Software Reliability Related
Problems

Sharad Kumar Dubey1*, Dr. Rajeev Yadav2

1
 Research Scholar, Shri Krishna University, Chhatarpur M.P.

2
 Professor, Shri Krishna University, Chhatarpur M.P.

Abstract - Software dependability is a crucial component of software quality. Software is rigorously
examined and faults are fixed before it is released into the market. Every software business aspires to
create error-free software. A system's availability refers to how well it is operational and accessible when
it is needed for usage, while reliability refers to a program's ability to carry out its necessary duties. This
implies to the user that a system is more trustworthy if it successfully completes the duties put out to it.
Additionally, the research included topics such as Model Validation, Comparison Criteria, and Data
Analyses, as well as Model Comparison Results, Model Parameter Estimation Results, Software Testing,
Software Bugs, and Software Reliability.

Keyword - software reliability, SRGM

- X -

INTRODUCTION

A known and acknowledged reality is that software
solutions are critical in all walks of life. Software
systems research and industry have consistently and
tirelessly given mankind some remarkable software
products that have squeezed the whole globe into the
grasp of the common man and have brought the entire
humanity closer together to exchange experiences on
a globalized platform. The human race has already
made great strides in research by conquering the
moon, Mars, and beyond with the help of really
amazing and very complex solutions. As a result,
mankind has been able to successfully launch
multipurpose satellites, space shuttles, and other
spacecraft in order to better understand and forecast
the happenings in the universe with the ultimate goal of
maintaining life on Earth and exploring new places on
other planets for the possible existence of life. Even
while this technology is required for every operation, it
is not enough to just have a high level of accuracy.
Traveling millions of light-years is now something we
can envisage. In contrast, real-time and mission-critical
systems need hefty development expenses. Leaving
even the slightest amount of leeway for mistake in
safety-critical apps puts users' lives at grave danger.[1]

Reliability along with reliability, flexibility, efficiency,
serviceability, capability, installation capacity,
maintenance capacity and documentation are an
essential feature of software quality. The software
reliability is described as "the possibility of failure-free
operation of software over a specified period of time in
a specified setting" according to ANSI (American
National Standards Institute). Computer Software

Trustworthiness is difficult to obtain since software is
also highly technical. While it's impossible to
achieve a certain degree of reliability with all
extremely complicated structures, like applications,
device engineers prefer to move complications
through their software layer, with the quick growth of
systems size and simple to do so with a software
update. Although software complexity is inversely
associated with software stability, it is directly linked
to other major software quality variables, especially
functionality, capacity etc. [2]

Software Reliability

In addition to usability, performance, serviceability,
capability, install ability and documentation's
importance to software quality is reliability. Software
Reliability is defined by the American National
Standards Institute (ANSI) as "the likelihood of
failure-free software execution over a specific
amount of time in a specified environment".
Software The difficulty of achieving reliability is due
to the enormous complexity of software. Because of
the fast increase in system size and the ease with
which software can be upgraded, system engineers
prefer to push complexity into the software layer,
despite the fact that this makes it difficult to achieve
a particular level of dependability. Complexity of
software affects software dependability negatively,
but it also has a positive impact on other crucial
aspects of software quality, such as its capacity to
perform many functions. By emphasizing these
functions, software will become more
sophisticated.[3]

Sharad Kumar Dubey1*, Dr. Rajeev Yadav2

w
w

w
.i
g

n
it

e
d

.i
n

108

 A Study of Certain Software Reliability Related Problems

Software Bugs

High-availability server applications have necessitated
an increase in reliability. In the event of system failures,
productivity and profitability might be severely harmed,
resulting in a considerable decrease in system
availability. For a financial business, one hour of
downtime costs more than $6 million, according to a
survey from Gartner Group. Many major tragedies have
been caused by software defects in crucial systems,
including aircraft accidents, nuclear reactor shutdowns,
and more. Unfortunately, flaws in software are still a
common occurrence. Software bugs have been shown
to be one of the most common causes of system
failures in a number of different studies. Gray's
research from 1986 suggests that 25% of Tandem
system failures were caused by software defects. More
than 40% of all system failures are the result of
software mistakes, according to a study from the year
2000. Each year, software flaws cost the U.S. economy
around $59.5 billion, or 0.6% of GDP, says the National
Institute of Standards and Technology (NIST). Most
software businesses devote considerable resources to
software testing and debugging in order to improve the
overall quality of their products. Research suggests
that 50-80% of development and maintenance time is
devoted to reducing the amount of faults in the code
that is actually delivered.[4]

Software Testing

In order to determine if a programme or system has
the desired features or capabilities, it must undergo
software testing. Software testing is a vital part in
ensuring the quality of software. Instead of showing
that a software works perfectly, good testing should
reveal that it has flaws. Every stage of the Software
Development Life Cycle must be tested to ensure the
quality of the product (SDLC). Discipline is being
imposed as a result of this strategy. The software is
tested as it is built and integrated to the developing
system to verify that it works properly and effectively

LITERATURE REVIEW

Y. Geetha Reddy, Dr. Y Prasanth (2020) it is believed
that software systems developed utilising statistical
learning models would be reliable. However, a large
percentage of flaws go unnoticed in small and medium-
sized implementations. During the product
development and testing phase, a wide variety of trust
tests are employed to detect software errors. Real-time
trust assessment is based on new defects discovered
throughout the app examination and repair process. It
is critical to manage very trustworthy findings in
contemporary SRGMs and these models are not
important to mathematical dependencies and
assessments of independence. The suggested
methodology uses a novel quartile density distribution
model that focuses on the dependability prediction rate.
In terms of skewedness and weakness, this model
performs better than classic growth models, according
to experimental investigations. [5]

Deepak Kumar, ShubhraGautam (2018) In today's
society, with the growing demand for information
solutions, the most efficient systems must be built.
Software stability is the likelihood that a device is free
of malfunction under any circumstances over a
specified time. To calculate the consistency of the app,
software Reliability Growth Models (SRGMs), Many
SRGMs accept the one-stage approach of program
stability. However, some researchers regard it as a
twostage method for observing and removing errors.
Furthermore, the literature examines the incomplete
removal of program failure. Two methods of debugging
may take place, i.e. imperfect deletion and error
generation. In this article we provide two new SRGMs
that use a learning feature to remove defective defects
and generate errors. Actual software data sets and
frameworks are validated in conjunction with present
models. Based on the importance of the parameters,
the proposed model may even be reduced to current
model. [6]

Da Hye Lee, In Hong Chang, Hoang Pham and
Kwang Yoon Song (2018) ―A Software Reliability
Model Considering the Syntax Error in Uncertainty
Environment, Optimal Release Time, and Sensitivity
Analysis” The software developers have set
themselves the aim of developing high-quality and
dependable products. Software has grown
complicated in the last decades and thus reliable
software solutions are harder to create. Failures in
software can entail severe social or economic
damage therefore software dependability is
essential. To calculate software reliability, software
reliability growth models (SRGMs) have been
employed. In this study we provide a novel
dependability model of software and compare it with
a number of non-homogeneous Poisson process
models (NHPPs). We also evaluate the fitness of
existing GMRs on the basis of eight criteria using
real sets of data. The findings enable us to identify
the optimum model. [7]

Song, Kwang& Chang, In & Pham, Hoang (2017)
―A Software Reliability Model with a Weibull Fault
Detection Rate Function Subject to Operating
Environments‖ These systems are utilized in field
settings that are same or similar to those used in
development test environments in the introduction of
software systems; however, they may also be
employed at many places that vary from the
environment in which they have been created and
tested. For many reasons, such as a particular
environment or a code fault location, it is difficult to
increase software dependability. We present a novel
model of software dependability, in which the
unpredictability of operating environments is taken
into consideration. For the suggested paradigm, the
explicit mid-value solution is given. Examples of the
fitness of various current NHPp models are given to
demonstrate the fit of all models based on two sets
of failure data gathered from software applications.
The models are based on two different sets of
failure data. The findings indicate that the suggested

Sharad Kumar Dubey1*, Dr. Rajeev Yadav2

w
w

w
.i
g

n
it

e
d

.i
n

109

 Journal of Advances in Science and Technology
Vol. 18, Issue No. 2, September–2021, ISSN 2230-9659

model more closely matches the data than other
current NHPP models.[8]

JiajunXu and Shuzhen Yao (2016) The majority of the
non-homogeneous Poisson process (NHPP) software
reliability growth models (SRGMs) commonly presume
flawless or incomplete debugging. In the production
and test process, however, environmental conditions
generate considerable complexity for SRGMs. In
quantifying uncertainties associated with a method of
ideal or imperfect debugging, we propose a new NHPP
model, focused on a partial differential equation (PDE).
As a noise of random correlation, we reflect
environmental insecurities collectively. In the modern
stochastic system, the complete statistic knowledge of,
for instance, the debugging method may be determined
(PDF). The suggested model is similar to observation
by some similarities with historical evidence and
current methods, such as the classical NHPP model.
[9]

Fan Li and Ze-Long Yi (2016) The SRGMs based on
a non-homogeneous Poisson process (NHPP) are
commonly utilized in describing the behavior of
stochastic failure and evaluating software system
reliability. Checking and fault interdependency perform
important roles with these models. Taking into account
the power law feature of test effort and the inter-
dependence of multiple-generation faults, we suggest
an updated SRGM to rethink the trust of open
source systems (OSS) and then to use various real-
world data to verify the output of that model. Our
observational tests demonstrate that the model blends
well into the failure data and has a very strong potential
for prediction. In terms of test expense and reliability
criteria, we also officially study the optimal product
release strategy. Through carrying out sensitivities
research, we will notice that the right period to release
the program would be seriously postponed and further
money wasted in testing the software if the testing
impact or the failure interdependence is ignored. [10]

Mohammed Alweshah, Walid
Ahmed, HamzaAldabbas (2015) Reliability growth
model prediction and identification and removal of
mistakes for software and software engineering
engineers and project managers is both a need and a
difficulty. The ability to estimate the amount of software
bugs greatly aids in deciding the delivery date of the
software and in successful project capital management.
The cumulative failures in the test phase can be
evaluated by two or three parameters in most growth
models. In recent years there has been an increased
interest in using evolutionary calculation to solve
prediction and modeling problems. This paper
discusses the usage of genetic programming (GP) as
an instrument for designing growth models that can
reliably estimate the amount of software errors at an
early stage of the research process. [11]

Chiu, Kuei-Chen (2013) In recent decades, SRGM
models have been developed for the estimation of
device stability during testing/debugging. The majority

of the models is built on the NHPP and a test behavior
of S or exponential form is normally presumed. Chiu et
al. (2008) presented an SRGM which takes into
account the study results and can reasonably explain
both S-shaped and exponential behaviors. In this
document both linear and empirical study results are
considered in an SRGM in order to enhance the Chiu
and others model (2008). The learning effects are
dependent on the duration of the research and analyze
what and what effects the program implementation will
have. This analysis further explores the feasibility of the
proposed R Square models (Rsq) and contrasts the
findings with the other models through the use of four
actual datasets. The suggested models concurrently
consider the results of continuous, longitudinal and
exponential learning. [12]

P. ARUN BABU (2013) In terms of functionalities,
expense, flexibility, maintenance and reusability
software-based systems have many advantages
over hardware-based systems. Code is, however,
apt to crash. Poorly written security-critical software
may trigger disastrous breakdowns and life threats.
Technology that is crucial for protection must then
be properly checked and it is essential to study the
likelihood of software errors. Software usability
queening is perceived to be an outstanding issue;
current methods and templates are not suitable with
regard to safety implementations and have
expectations and limitations. It also requires
researching the variables that may influence
software stability in order to develop stable software.
[13]

Mohd.Anjum, Md. AsrafulHaque, Nesar Ahmad
(2013) Many SRGMs have been analyzed to
calculate growth in program reliability. Many SRGMs
were analyzed. For researchers in the field of
program usability, the choice of optimal SRGMs for
use in a given case has been an area of concern.
For each comparative parameter, all current
methodologies apply the same weight. In fact,
however, all parameters have not equal priority in
the calculation of reliability. In this article, the issue
of efficiency analysis of different non-homogeneous
Poison process (NHPP) models is posed with a
statistical approach focused on weighted
parameters. It is very easy and needs to be
measured less. A series of 12 comparative criteria
were established and the software reliability
development models proposed over the past 30
years were allocated to different weights for each
criterion. Results from case studies suggest that the
weighted system of importance criterion provides a
very promising strategy for comparing app reliability
development model. [14]

Peter H. Feiler John B. Goodenough Arie
Gurfinkel Charles B. Weinstock Lutz Wrage
(2012) the scale and sophistication of software-
related devices, such as rotorcraft and others, has
grown exponentially. Develop then testing has left
them unaffordable to build and qualify for the current

Sharad Kumar Dubey1*, Dr. Rajeev Yadav2

w
w

w
.i
g

n
it

e
d

.i
n

110

 A Study of Certain Software Reliability Related Problems

software engineering procedure. This study explores
the difficulties in the certification and results of many
studies undertaken by government and business. It
identifies a number of root causes and provides a
reliability validation and improvement framework
integrating several of the recommended technological
solutions: a verification of the formalized needs; an
architecture-centered, model-based engineering
approach which detects early system problems through
analysis; It also forms the foundation for a series of
metrics to boost cost-effectiveness to meet emerging
software sophistication, trustworthiness, and cost
metrics challenges.[15]

Chao-Jung Hsu, Chin-Yu Huang, Jun-Ru Chang
(2011) many software reliability models have been
proposed for estimating the growth of software
products in the last three decades with different
parameters that represent different testing properties.
We have found that the fault reduction factor (FRF)
proposed by Musa is among the most significant
parameters for software reliability development. FRF is
usually defined as the net failure reduction ratio. Due to
multiple external causes, such as imperfect debugging
and debugging time lag, FRF may be affected
throughout software testing. Thus, we first examine
some real facts in this paper in order to track the FRF
patterns and recognize FRF as a time-changing
feature. We research in addition how time variable
FRFs are integrated into growth modeling for program
reliability. Some experimental findings suggest that the
models suggested will increase the exactness of the
program reliability assessment. Sensitivity analysis
focused on cost and durability criteria was addressed
for different optimum release dates. The analysis
shows that the modification of FRF value can affect
period of release and costs of production. [16]

Chiu, Kuei-Chen & Huang, Yeu-Shiang&Lee, Tzai-
Zang, (2008) Reliability improvement in program
reliability in the testing/debugging process has been
studied over the past three decades. Most models were
built based on the NHPP (Non-homogenous Poisson
Process) and are typically supposed to be S-shaped or
exponential-shaped. These models may only, sadly, be
ideal for basic software failure data, thus restricting
application coverage. Therefore, we considered
efficiency of testing and debugging, from the point of
view of learning impacts, which can impact the process
of software reliability development, that not only
concerned the skill of test personnel, but also the
learning effect derived from testing and debugging
codes. Simultaneously, and the experiment findings are
fit, the suggested solution will reasonably characterize
the S-formed and exponential forms of comportment. A
comparative study was also undertaken to assess the
feasibility of the proposed model and other models of
program failure. Finally, we propose an acceptable
release strategy for software. [17]

P.K. Kapur, V. B. Singh, Sameer Anand, V. S. S.
Yadavalli (2008) Many software reliability growth
model (SRGM) models focused on a non-homogenous
Poisson (NHPP) mechanism have been established

with the expectation that an FDR and a failure
prediction process depending on the residual fault
material are usable. This paper uses a particular
method for model creation to create an SRGM focused
on NHPP. In this case, not only the content of the
residual fault but also the test period is the fault
detection mechanism. In software growth, the fault
identification rate doesn't continue throughout the
whole test phase but varies due to fluctuations in
resource distribution, fault density, operating setting
and test strategies (called the change-point). The FDR
is described here as a test time feature. The suggested
model often includes the test effort with the change-
point principle to solve the issues of rushed software
efforts and provides project management with a
strategy to coordinate the test effort and stability to
achieve the optimal degree of reliability. [18]

METHODOLOGY

The role of learning remains important in understanding
the variations in testing process. Learning manifests as
an S-shaped behavior of mean value function (MVF)
or the testing effort (TE) function. Learning plays
important role on fault detection rate also. In this
study, the variations in fault detection rate based on
gains in learning are considered as S-shaped
learning based rate function. The main objective of
this research is to carry out study and development
of some improved or new software reliability growth
models under the analytical framework of NHPP.
The development of SRGMs is done incorporating
the concepts of learning and change-point analysis.
The models are checked against the statistical
structures of different datasets and statistical tests
are used to validate the proposed growth models.

Two types of learning have been identified and two
new models have been proposed considering these
two types of learning. First one of the two proposed
models incorporates these two types of learning and
second proposed model extends the first proposed
model by incorporating a negligence factor, in
addition to two type learning. The negligence factor
represents failure on part of testers to apply the
learnt patterns due to negligence. The proposed
models have been statistically analyzed and
validated using actual software failure datasets. This
study also considers fault detection rate functions in
the general NHPP imperfect debugging
methodology. Two new imperfect debugging models
under learning-factor based fault detection rate (LB-
FDR) have been instituted differing under the
assumptions of the form (exponential or linear) of
fault content (FC) functions which involve a fault
introduction factor representing imperfect
debugging. The first proposed fault detection rate
model is based on exponential fault content (EFC)
function and the second proposed fault detection
rate model is based on linear fault content (LFC)
function. The proposed models have been
statistically analyzed and validated using actual
software failure datasets. Further, this study
considers the problem of change-point which under

Sharad Kumar Dubey1*, Dr. Rajeev Yadav2

w
w

w
.i
g

n
it

e
d

.i
n

111

 Journal of Advances in Science and Technology
Vol. 18, Issue No. 2, September–2021, ISSN 2230-9659

practical settings could represent an abrupt gain in
learning effect due to introduction of new testing
techniques, tools, strategies etc. A new distribution-
based model incorporating change-point under
imperfect debugging settings is proposed, statistically
analyzed and validated.

DATA ANALYSIS

1. Model Validation, Comparison Criteria and Data

Analyses

We used a genuine software data set to demonstrate
the estimating technique and use of the SRGM
(existing and planned). The statistical tool SPSS was
used to estimate the models' parameters, and
change-point analyzers were used to assess the data
sets' change-point.. Data analysis of genuine software
data sets was used to demonstrate the estimate
technique of the SRGM (existing and planned,
respectively) and its application. The statistical tool
SPSS was used to estimate the model parameters
and the change-point analyzer was used to assess
the datasets.

1.1 Data set1(DS-1)

Faults were found in the initial data set (DS-1) after 35
months of testing a radar system of 124 KLOC in size.
Brooks and Motley provide the information used here
(1980). The 17th month marks the beginning of a new
trend in this dataset.These findings may be read in
Table , which shows parameter estimate and
comparison criteria for DS-1 of all the models in the
study. The table shows that SRGM-3 and SRGM-5
have higher R2 values and lower MSE, Bias, Variation,
and RMSPE values than other models, indicating that
they give superior goodness-of-fit for DS-1 than the
other models.

1.2 Data set 2(DS-2)

When real-time command and control was tested
for 19 weeks, 328 defects were uncovered in the
second data set (DS-2). Ohba provided the
referenced information for this (1984). This data
set's change point is the sixth week. Table 3.4 and
Table 3.5 provide the parameter estimate and
comparison criteria findings for DS-2 of all the
models included in the study. The table shows that
the R2 values for SRGM-3 and SRGM-5 are higher
and the values of MSE, Bias, Variation, and
RMSPE are lower in comparison to other models,
and the DS-2 model gives a superior match.

Table 1: Model Parameter Estimation Results (DS-
1)

Table 2: Model Comparison Results (DS-1)

Table 3: Model Parameter Estimation Results
(DS-2)

Table 4: Model Comparison Results (DS-2)

CONCLUSION

There are two basic and realistic models of increase
in software dependability that combine two learning
principles. In order to improve learning by
technology investment, the learned lessons are
taken into consideration as well as the autonomous
learning. In addition to 2-type learning in the second
model, a negligent element is a failure of the test
testers to use the learned patterns in the error
detection and repair process. The cost analysis for
the suggested models may be expanded for this
research and thus offer a rule governing when to
cease the testing and release the program. In
addition, its study of the inflection point may be
studied. The environmental impact may be further
explored on the modelling of learning effects. In
addition, the suggested model may be analyzed

Sharad Kumar Dubey1*, Dr. Rajeev Yadav2

w
w

w
.i
g

n
it

e
d

.i
n

112

 A Study of Certain Software Reliability Related Problems

using a Bayesian or Quasi-Bayesian method with
inadequate data and an unknown environment.

REFERENCE

1. Iannino A., Musa J.D., Okumoto K., Littlewood B.
―Criteria for Software Reliability Model
Comparisions‖, IEEE Transactions on Software
Engineering, SE-10(6): pp687-691, 1984.

2. ArchanaKumar,Ph.D. Thesis ―A Study in Software
Reliability Growth Modelling Under Distributed
Development Environment‖, Department of
Operational Research, University of Delhi, Delhi,
2007.

3. Popstajanova, K. and K. Trivedi: ―Architecture
Based approach to Reliability Assessment of
Software Systems‖, Performance Evaluation, Vol.
45, No.2, pp.179-204, 2001.

4. Yamada S, Ohba M and Osaki S, ―S-shaped
reliability growth modeling for software error
detection‖, IEEE Transaction on Reliability, Vol.
32, pp.475–478, 1983.

5. Y. Geetha Reddy, Dr. Y Prasanth, ―STATISTICAL
QUARTILE DEVIATION-BASED SOFTWARE
RELIABILITY GROWTH ESTIMATION
MEASURE FOR RELIABILITY PREDICTION‖,
Journal of Critical Reviews ISSN- 2394-5125 Vol
7, Issue 2, 2020

6. Deepak Kumar, ShubhraGautam‖ Flexible
Software Reliability Growth Models Under
Imperfect Debugging and Error Generation Using
Learning Function‖, Journal of Management
Information and Decision Sciences, 2018 Vol: 21
Issue: 1

7. Da Hye Lee, In Hong Chang, Hoang Pham and
Kwang Yoon Song, Appl. Sci. 2018, 8, 1483;
doi:10.3390/app8091483

8. Song, Kwang& Chang, In & Pham, Hoang. (2017).
A Software Reliability Model with a Weibull Fault
Detection Rate Function Subject to Operating
Environments. Applied Sciences. 7. 983.
10.3390/app7100983.

9. JiajunXu and Shuzhen Yao, ―Software Reliability
Growth Model with Partial Differential Equation for
Various Debugging Processes‖, Volume 2016,
Article ID 2476584, 13 pages, Mathematical
Problems in Engineering.

10. Fan Li and Ze-Long Yi , ―A New Software
Reliability Growth Model: Multigeneration Faults
and a Power-Law Testing-Effort Function‖,
Volume 2016, Article ID 9276093, Mathematical
Problems in Engineering

11. Mohammed Alweshah, Walid Ahmed, Hamza
Aldabbas,(2015) ―Evolution of Software Reliability
Growth Models: A Comparison of Auto-
Regression and Genetic Programming Models‖,
International Journal of Computer Applications

12. Chiu, Kuei-Chen, ―A Discussion of Software
Reliability Growth Models with Time-Varying
Learning Effects‖, American Journal of Software
Engineering and Applications, volume 2, Issue 3,
June 2013, Pages: 92-104

13. P. ARUN BABU,(2013) ―SOFTWARE
RELIABILITY IN SAFETY CRITICAL
SUPERVISION AND CONTROL OF NUCLEAR
REACTORS‖ ACM Sigsoft software engineering
notes, Volume 37, Issue 5.

14. Mohd. Anjum, Md. AsrafulHaque, Nesar Ahmad,
―Analysis and Ranking of Software
ReliabilityModels Based on Weighted Criteria
Value‖, I.J. Information Technology and Computer
Science, 2013, 02, 1-14

15. Peter H. Feiler John B.
GoodenoughArieGurfinkel Charles B.
Weinstock Lutz Wrage, ―Reliability Validation
and Improvement Framework‖, Research,
Technology, and System Solutions Program,
November 2012.

16. Chao-Jung Hsu, Chin-Yu Huang, Jun-Ru
Chang, Enhancing software reliability modeling
and prediction through the introduction of time-
variable fault reduction factor, Applied
Mathematical Modelling, Volume 35, Issue 1,
2011, Pages 506-521,

17. Chiu, Kuei-Chen & Huang, Yeu-Shiang& Lee,
Tzai-Zang, 2008. "A study of software reliability
growth from the perspective of learning
effects," Reliability Engineering and System
Safety, Elsevier, vol. 93(10), pages 1410-1421.

18. P.K. Kapur, V. B. Singh, Sameer Anand, V. S.
S. Yadavalli, ―Software reliability growth model
with change-point and effort control using a
power function of the testing time ‖,
International Journal of Production
Research 46(3):771-787

Corresponding Author

Sharad Kumar Dubey*

Research Scholar, Shri Krishna University,
Chhatarpur M.P.

