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Abstract - Creating ferritic steel welding alloys that can keep up with the demands of modern steel 
production is no easy undertaking. Until an optimal composition and welding process are found, this has 
often been accomplished through a process of experimental trial and error. A shorter trial period could 
mean less money and time spent on the process overall. In this study, we describe how an artificial 
neural network may be used to predict the yield strengths of ferritic steel weld deposits based on the 
materials used, the welding parameters employed, and the post-welding heat treatments applied. It 
details the creation of the General regression neural network (GRNN) models and the verification of their 
metallurgical underpinnings and correctness.. 

Keywords - Neural network; Ferritic Steels; Yield Strength; Welding alloys; Variables, General 
regression neural network (GRNN) models  
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INTRODUCTION 

The tensile strength test is critical for the specification 
and acceptance of welding materials because it 
provides the fundamental design data needed for both. 
Measurements themselves are straightforward, but the 
values that result from them depend intricately on 
things like chemical make-up, welding parameters, and 
post-weld heat treatment.To estimate the tensile 
parameters as a function of all these factors, neither a 
fundamental nor an experimental model is available 
[1,2]. 

The problem arises from the intricate nonlinear 
connection between the input variables and the output 
strength, which is difficult to predict. When all the 
variables are considered, the true behaviour is highly 
nonlinear, but the physical models for strengthening 
mechanisms are not sophisticated enough to capture 
this. 

To empirically model and interpret the dependence of 
yield strength of steel weld deposits as a  function of 
many input variables was the goal of this work, and 
GRNN was the tool of choice. 

Incredibly complex nonlinear relationships are within 
the reach of a general regression neural network. 
Information is fed into the GRNN through input and 
output parameters. The outputs are the regression 
coefficients, as in regression analysis, and a 
description of the type of function that, together with 
the weights, links the independent or input variables to 
the dependent or output variables. 

For the purpose of neural network analysis of ferritic 
steel welds, a large database of experimental 
measurements was compiled for model design 
using the GRNN approach. 

MODELLING WORK 

All of the measurements were taken on weld metal 
characteristics, and all of the data came from weld 
deposits where the joint was created to limit dilution 
from the base metal. Tungsten inert gas welding 
(TIGW), submerged arc welding (SAW), and manual 
metal arc welding (MMAW) are the three types of 
electric welding techniques represented (TIG). The 
amount of heat used was the only indicator of the 
welding operation itself. Multiple sources were used 
to compile the data. (Table 1). 

The purpose of the neural network analysis was to 
make predictions about the Yield Strength based on 
a wide range of factors, such as the chemical 
composition, the amount of heat applied during 
welding, and the presence or absence of 
subsequent heat treatment. This results in a total of 
2121 experiments being included in the yield 
strength database, each with their own unique set of 
17 input variables. 

Generalized Regression Neural Networks[4] are 
utilised as a neural network technique in this paper. 
There are 17 nodes in every GRNN network. There 
are 1061 neurons in the primary obscuring layer. 
There are 2 hidden-layer neurons and 1 output-layer 
neuron. (Figure.1) 
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Fig. 1 Architecture of generalized regression neural 
network 

Table 1: The Input Variables for Yield Strength 
Model. “p.p.m .’ corresponds to parts per million by 

weight. 

Variables Min Max Average StDev 

C wt% 0.01 0.22 0.0708 0.0216 

Si wt% 0 1.63 0.3467 0.1262 

Mn wt% 0.23 2.31 1.1959 0.4175 

S wt% 0.001 0.14 0.0081 0.0051 

P wt% 0.001 0.25 0.0108 0.0075 

Ni wt% 0 10.66 0.5807 1.4971 

Cr wt% 0 12.1 0.6243 1.5961 

Mo wt% 0 2.4 0.2001 0.3591 

V wt% 0 0.32 0.0191 0.0507 

Cu wt% 0 2.18 0.0659 0.2062 

Ti ppm 0 1000 78.6382 122.4481 

B ppm 0 200 9.2504 27.9733 

Nb ppm 0 1770 53.7704 145.3195 

HI kJ mm-1 0.55 7.9 1.3573 0.9931 

IPT C 20 375 205.4668 42.7739 

PWHTT C 20 780 328.1428 211.1714 

PWHTt h 0 50 9.4335 6.5893 

YS MPa 210 1026 535.7139 119.8611 

 

RESULTS AND DISCUSSIONS  

The normal behavior of the Predicted Yield Strength 
and Observed Yield Strength observed in fig. 2 for 
training data , Validation data, Training of the model is 
excellent by GRNN method. 

 

 

 

Fig. 2 for training data , Validation data, Training 
of the model is excellent by GRNN method. 

The best model of GRNN has training error 
0.011404 , validation error( selection error) 
0.018101 ,and testing error 0.018669. This model is 
used for getting the results in form of various 
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response graphs to understand the trend between the 
input variables and output variable( Yield Strength). 
Fig. 3 

 

Fig. c Response Graph of Yield Strength MPa and 
Manganese(wt%) 

 

Fig. d Response Graph of Yield Strength MPa and 
Sulphur(wt%) 

 

Fig. e Response Graph of Yield Strength MPa and 
Phosphorus(wt%) 

 

Fig. f Response Graph of Yield Strength MPa and 
Nickel(wt%) 

 

Fig. g Response Graph of Yield Strength MPa 
and Chromium(wt%) 

 

Fig. h Response Graph of Yield Strength MPa 
and Molybdenum(wt%) 
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Fig. i Response Graph of Yield Strength MPa and 
Vanadium(wt%) 

 

Fig. k Response Graph of Yield Strength MPa and 
Titanium(ppmw) 

 

Fig. l Response Graph of Yield Strength MPa and 
Boron(ppmw) 

 

Fig. m Response Graph of Yield Strength MPa 
and Niobium(ppmw) 

Figure 3 (a to m) Response graphs of Input 
variables and Yield Strength of Ferritic Steel 

Welds (GRNN) 

There are a number of factors that can affect the 
yield strength of welding alloys, and each one is 
covered below. There is a steep decline in yield 
strength after adding 0.1% of carbon, from 522 MPa 
at 0.05% to 477 MPa at 0.1%. The yield strength 
improves to 536 MPa at 0.15% C, before dropping 
to 519 MPa at 0.2% C. Silicon's yield strength 
decreases from 440 MPa to 431 MPa between 0.1% 
and 0.2%, before rising to 505 MPa at 0.45%. Yield 
strength is 515 MPa at 0.8%, and it drops to 504 
MPa across a range of 1%-1.2 % from 1% to 0.8%. 
As the manganese percentage rises, the yield 
strength rises alongside it, going from 400 MPa to 
563 MPa. Loss of yield strength is seen at 0.8%, 
1.1%, and 2.1%. In sulphur, yield strength drops 
from 490 MPa to 464 MPa, the first sign of a 
weakening material. The pressure has been raised 
from 464 MPa to 537 MPa, an increase of slightly 
more than 0.09%. The phosphorus contributes to a 
rise in yield strength from 485 MPa to 537 MPa. The 
maximum yield strength of nickel is 629 MPa at 7.8 
percent and the minimum is 490 MPa at 1 percent. 
Meant literally. The graph demonstrates a decline in 
yield strength to 528 MPa at a value of 4.9%. The 
yield strength drops to about 539 MPa when the Ni 
content is more than 7.8%i. The yield strength of 
chromium ranges from 3% to 7%, with a high of 740 
MPa. The yield strength drops to 539 MPa at a Cr 
content of more exceeding 7%. Addition of up to 3% 
chromium causes a jump in yield strength from 479 
MPa to 740 MPa. Molybdenum's 1.98% yield 
strength improvement boosts the material from 490 
MPa to 730 MPa. Yield strength is 719 MPa at 0.8% 
Mo. The yield strength drops from 730 MPa to 539 
MPa for additions of Mo more than 1.98 percent. By 
adding vanadium, the yield strength can go from 492 
MPa to 600 MPa, a gain of 15%. The yield strength 
drops to 538 MPa at 0.22% V. Yield strength is 
improved by 0.6% due to the addition of copper, 
from 490 MPa to 513 MPa. There is a drop in yield 
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strength to 488 MPa at 1.2% Cu. When the copper 
content is greater than 1.27 percent, the yield strength 
increases to 570 MPa. As for yield strength, titanium 
provides between 457 and 553 MPa. The maximum 
yield strength is achieved at 700 ppm. Titanium yield 
strength can vary between 90 and 630 parts per 
million. At 50 parts per million (ppm), the yield strength 
of boron is 535 MPa, which is the highest value ever 
recorded. In the presence of more than 50 ppm, the 
yield strength drops to 454 MPa. The yield strength of 
niobium tends to rise from 490 MPa to 644 MPa as its 
concentration rises from 180 ppm to 1400 ppm. 

The yield strength is stated to be 490 MPa for Heat 
Input, with a subsequent decrease to 406 MPa 
between 1.5 and 6.6 kJ mm-1. More than 6.7 kJ mm-1 
is needed to attain the maximum yield strength of 537 
MPa. The yield strength of Interpass is 538 MPa at 
temperatures below 70 C. A decline in yield strength to 
470 MPa is seen at temperatures more than 155 
degrees Celsius, while this strength is seen to increase 
to 490 MPa at temperatures of 150 degrees Celsius. 
The minimum yield strength is 4.3 MPa at 270 degrees 
Celsius. Yield strength improves to 480 MPa and 490 
MPa after post-weld heat treatment is carried out at 
temperatures as high as 425 C. When heated over 455 
degrees Celsius, the yield strength climbs to a peak of 
655 MPa at 710 C, before gradually decreasing to 510 
MPa. There is a correlation between post-weld heat 
treatment duration and yield strength, with a rise from 
420 MPa to 490 MPa over the course of 5 hours. If you 
leave it on for longer than 25 hours, the maximum yield 
strength will rise to 538 MPa. 

Figure 4.2 (a-q) shows that the connection between the 
input factors and yield strength is nonlinear. 

The GRNN model is great for the design of welds due 
to its high accuracy in predicting the yield strength of 
ferritic steel welds from unseen data. 

It is demonstrated that the GRNN model has prediction 
capacity by comparing the anticipated yield strength for 
unseen data of three weld alloys with measured values 
of yield strength. The GRNN model presented here can 
be put to use in ferritic steel alloys research and 
development. Studies of creep-exposed T91–T23 
DMWs revealed the unfavourable microstructural 
changes that occur in these welded joints when 
subjected to service conditions. The dissolution of 
carbides in the carbon-depleted zone resulted in a 
partial recrystallization of the weld metal 
microstructure. In addition, on the side of the weld that 
contains the more highly alloyed Grade 91 base metal, 
finely distributed carbides were discovered to correlate 
to a substantial increase in hardness immediately 
adjacent to the fusion line. Good agreement was found 
between the computational simulations and the creep 
experiments after an examination and comparison with 
the data accumulated with 1-dimensional diffusion 
simulations. It was also demonstrated that familiarity 
with the materials and their precise microstructural 
properties, specifically their inherent precipitate 

phases, is important for enhanced outcomes from the 
computational simulations. 

Table 2: Predicted yield strength by GRNN model 
for unseen data of three ferritic weld deposits 

 

 

CONCLUSIONS 

Due to the nonlinear nature of the relationship 
between input and output variables in weld alloys, 
the best neural network for capturing these trends is 
the generalised regression neural network. To make 
sense of the vast amount of available experimental 
data on yield strength, researchers have turned to a 
neural network approach based within a General 
regression neural network. The yield strength can 
now be estimated in relation to the material type, 
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welding parameters, and heat treatment conditions. In 
order to better understand ferritic steel alloys used in 
welding for the construction of various types of 
equipment in industries, the model developed has been 
put to use. Several applications have used it 
successfully with blind data on ferritic steel welds. 
GRNN modelling makes it simpler, more accurate, 
more cost-effective, and quicker to design ferritic weld 
alloys. Weld alloys with the desired yield strength can 
be produced for practical use in industries thanks to 
careful manipulation of the most important input 
variables.  
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