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Abstract - As sub-fields of statistical biology, statistical ecology and epidemiology focus on the quantitative 
analysis of populations of organisms and their physical settings. Population biology, unsurprisingly, is a 
quantitative field of study. Population decline, growth, extinction, dispersal, immigration effects, 
emigration, population mixing, age-structure effects, etc. are all factors we will be interested in considering, 
clarifying, and forecasting as this discussion progresses. After years of intense collaboration between 
scientists working in different disciplines, the modern field of nonlinear science finally came into being a 
few decades ago. Different non-linear effects arise from mathematical biology's model equations (e.g. 
hysteresis, structural instability, dissipatory structures, dynamic disorder, etc.). Over the past two 
decades, nonlinear dynamics has played a crucial role in the modeling of a wide range of biological and 
physiological processes. Stability, periodicity, stochasticity bifurcation, fluctuations, and pattern 
forming are just some of the characteristics of the system that have been studied and determinized, 
along with stochastic methods developed to address them, because of the critical importance of non-
linear dynamic models of complex ecosystems and epidemiological systems. We have also looked at the 
tools and concepts of thermodynamics and statistical mechanics as they pertain to the investigation of 
ecologically complex systems. 

Keywords - Ecological, Epidemiological Process, Statistical Models, Nonlinear dynamics, stability, 
periodicity.  
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INTRODUCTION 

Analysis and modeling of such biologically complicated 
processes from a nonlinear dynamic perspective are 
the focus of this research. The time and time can be 
continuous in the dynamic model. Different types of 
models, including deterministic, stochastic, 
thermodynamic, and stochastic ones, are used and 
analyzed here. Deterministic dynamic models based on 
differential or differential equations can provide 
explanations for phenomena like as stability and 
instability, periodicity, bifurcations, and catastrophic 
changes in the state of a system. The principles of 
stability are significant in the investigation of the 
constructions and operations of complex biological and 
green systems. The purpose of this paper is to analyze 
some dynamically complex problems associated with 
stability and instability, periodicity and bifurcation, and 
the emergence of complex ecological and 
epidemiological systems due to spread. Complex 
behavior emerges in large part due to the dynamic 
behavior of system probability and stochasticity. 
Physicochemical, biochemical, social, and 
technological processes may not always be able to 
reliably predict the future behavior of the system, as in 
the case of deterministic dynamical models based on 
differential or equation. When examining a system, the 
probability or stochastic definition of the system is the 

most natural way to approach it when dealing with 
unexpected, fluctuating occurrences. It is possible 
for the behavior of a system to be imprevisible 
because to the many body elements of the system 
(that is, due to the countless number of 
components, such as molecular cells, species, etc.) 
and the impact of a fluctuating random environment 
on systems. 

1.1 RELEVANT MATHEMATICAL BACKGROUND  

1. Dynamical System  

The idea of a dynamic system is a mathematical 
formalization of the more broad scientific idea of a 
deterrent mechanism. Many other physical, 
chemical, biological, environmental, economic, or 
social structures can be predicted based on our 
understanding of their current state and the rules 
governing their evolution. A system's behavior can 
be considered fixed at the outset if these laws don't 
evolve over time. Accordingly, the idea of a dynamic 
system entails both a set of possible states and a 
rule for how those states evolve over time. After 
isolating each component, we formally define the 
system's dynamic behavior. 
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State Space: The points of such set X are 
characterised in all possible system status. This 
collection is known as the machine state space. 
Indeed, it should suffice to indicate point x to point X 
not only for a definition of the system's current 
"position," but also for a determination of its growth.  

Time: The creation of a dynamic system means that 
the system has changed with time t to T, where T is 
set. Two types of systems are available: continuous 
(real) T = < 1, and discrete (integer) time T = Z. The 
first type of system is known as continuous time 
systems, while the second type is known as discrete 
time systems.  

Evolution Operator: An evolution law deciding the 
state of the system at time T is the main component of 
a dynamic system, given that the initial state x0 is 
understood. The most common way of determining the 
creation is to assume that a map μt is defined for the 
given t by T in the state area X. 

 

which transforms as initial state x0 ∈ X to some state xt 

∈ X at time t: 

 

The map υ t is often called the evolution operator of the 
system. 

Definition: A dynamical system is a triplet (T, X, υt ), 
where T is a time set, X is a state space, and υ t : X → 

X is a family of evolution operators parametrized by t ∈ 
T. 

Differential equations are the most common way to 
describe an ongoing dynamic time system. Assume 
that the system's state space is X = < n with 
coordinates (x1, x2, ......., xn). The rule of creation of 
the system is most often indirectly specified in terms of 
the speed Únxi as the coordinate function (x1, x2, ......., 
xn) as 

 

or in the equivalent vector form 

 

where the vector-valued function is 
supposed to be sufficiently differentiable (smooth). 

2. Equilibrium Points and Periodic Points  

Equilibrium Points: If a solution x(t) of continuous 

dynamical system x˙ = f(x) be such that x(t) = x ∀ t ∈ < 

i.e. if x(t) is constant, then x is called an equilibrium 
point. These constants are obviously solutions of the 
system of n equations 

 

Balance points are often called static or stationary 
resting points or fixed points or critical points. As the 
rate of change of state variables at stationary points is 
zero, the system will remain in that state for ever until 
the system enters the state represented by the 
stationary point. 

Periodic Points: Percentage point/solution of 
differential equations method x = f(x) at the interval of 
life for any T > 0 is a non-constant point that 
satisfies x (t + T) = x(t) = t The minimum T > 0 value 
is referred to as the solution time. 

3. Limit Cycles 

Let x(t) be a solution of the continuous dynamical 
system x˙ = f(x) t > 0 and satisfying the initial 

condition x(0) = x. A point  is called ωlimit 
point of x if there exists a sequences of times {tn} 
tends to +∞ as n → ∞ such that 

 

The set of all ω-limit points of x is called the ω-limit 
set of x denoted by ω(x). A closed orbit γ is said to 
be limit cycle if γ is a subset of ω(x) for some x that 
does not lie in γ. 

4. Linearisation and Characteristic Equation  

Consider an autonomous predator-prey system of 
the form 

 

where N is the number of prey and P is the number 
of predator. The equations for the equilibria 

 are found by setting the right hand sides 
equal to zero, 

 

To determine the stability of equilibrium, we 
introduce new variables that measure the deviation 
about the equilibrium, 
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We then linearise about the equilibrium point, 

 

This last set of equation can be written as 

 

Where the different partial derivatives are the aij. Matrix 
J of Jacobi is called the ecological community-matrix. It 
captures the power of relationships in a balanced 
group. The solution is now being pursued. 

 

With this substitution, the linearised system of equation 
reduces to 

 

The simplest systematic way for solving the above 
equation for x0 and y0 is to use Cramer‘s rule 

 

We've got a problem, however. Each numerator has a 
determinant of zero. Except that the denominator is 
identical to zero, we must consider the trivial solution. 
In order to prevent this, we need it 

 

By expanding the determinant, we obtain the 
characteristic equation 

 

5, Routh-Hurwitz Stability Criteria  

For any m × m matrix A, the characteristic equation for 
the square matrix A is an mth order polynomial 
equation 

 

The parameters Routh-Hurwitz are both formal and 
general, and restrict the coefficients A1, a2,am which 
are necessary and adequate for ensuring that all their 
proper values are found on the left half of the complex 
plane.. Explicitly Routh-Hurwitz stability conditions for 
m = 2, 3, 4 and 5 are as follows 

 

6. Bifurcation Theory  

A slow change in the input always occurs, that 
means the output is a continuous function of the 
input. The result is a small change in the output. 
This doesn't always happen. Consider the heating 
process for a water kettle. In the vicinity of the 
boiling point there may be a slight rise in heat, from 
liquid to vapour, and this changes in quality. The 
theory of bifurcation is the analysis of the changes in 
the consistency of the structure. Consider a device 
based on the number (μ1, μ2, ......, μn) of 
parameters. We assume the system to be 
autonomous and the set of equations describing the 
system can be written as 

 

Where x and  μ are xi and μi column vectors, 
respectively. Our goal is to evaluate balance states 
and equilibrium as the  μ value is modified. If there is 
a qualitative change in the solution with those 
values of  μ(=  μ0), then  μ0 is a point of bifurcation. 
The balance is determined by the resolution of f(x, 
μ  )=0, respectively. The f(x, μ  ) = 0 solution 
describes the surface of the (x, μ  ) field. A small 
change in  μ leads to a small change in x if the 
surface is smooth and nothing drastic occurs. If 
however the surface is collapsed, the collapse will 
lead to a small change in  μ, which is precisely the 
point of bifurcation. 

Hopf Bifurcation 

Suppose that the system 
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has an equilibrium state at (0, 0, µ0). The Jacobian 
matrix evaluated at the equilibrium point,  

 

 

Then a non-trivial periodic solution exists in the vicinity 
of (0, 0, μ0). This theorem is known as the Hopf 
forcation theorem and the Hopf forcation solution. 

7. Lyapunov Functions and Stability Criteria 

Consider the equation 

 

and Supposed to be trivia-based solution, i.e., f (t, 0) = 
0, t > t0, 0 respectively D. Consider the scalar V (t, x) 
function, which can constantly be separated into [t0, as 
opposed to) a function named as standardD. In 
addition, at x = 0 = D, V (t, 0) = 0. V (t, x) is not in some 
cases directly dependent on 0 t 0. In short V we can 
write (x).  

 

If a function V (t, x) depends explicitly on 0 t 0 , these 
definitions are adjusted as follows: 

Definition: The function V (t, x) is called positive 
(negative) definite in D if there exists a function W(x) 
with the properties: W(x) is defined and continuous in 
D, W(0) = 0, 0 < W(x) ≤ V (t, x)(V (t, x) < W(x) ≤ 0) for x 
≠0, t ≥ t0. 

To define semi-definite functions V (t, x) we replace < 
(>) by ≤ (≥).  

Definition: The orbital derivative Lt of the function V (t, 
x) in the direction of the vector field f(t, x), is given by 

 

 

Theorem: Consider the equation x˙ = f(t, x) and if it is 
possible to find a function V (t, x), defined in a 
neighbourhood of x = 0 and positive definite for t ≥ t0 

with the orbital derivative negative semi-definite, the 
solution x = 0 is stable in Lyapunov sense.  

Theorem: Consider the equation x˙ = f(t, x) and if it is 
possible to find a function V (t, x), defined in a 
neighbourhood of x = 0 and positive definite for t ≥ t0 
with the orbital derivative negative definite, the solution 
x = 0 is asymptotically stable. 

8. Diffusive Instability  

The Morphogenesis work of Turing started in 1951. 
The creation of the organism's shape or structure in the 
history of the individual is morphogenesis. His 
evolutionary idea was that passive diffusion could 
interfere with chemical reactions in a way which could 
destabilise symmetry solutions, even if the reaction 
itself does have no symmetry breach capability. 
"Can diffusion destabilise a spacially uniform and 
stable state? The obvious question arises? "Where 
this is the case, this is known as instability induced 
by diffusion or turing instability. 

We consider the system of m reaction diffusion 
equations given by 

 

in a domain  where Ω requires 
separating from the spatial variable x  . In order to 
work with a problem on a standard domain, it is 
often useful to rescale space variables, and it turns 
out that rescaling the time variable also simplifies 

the effect. So we define  and 

 to obtain 

 

say, on  In this equation γ is a measure 
of the linear dimensions of the original domain, so 
that increasing γ is equivalent to increasing domain 
size. Let us assume that this has a spatially uniform 

steady state solution u∗, so that , and 
take homogeneous Neumann (zero-flux) boundary 
conditions on ∂Ω. Let uˆ be the perturbation from the 

steady state, uˆ =u − u∗. The linearisation of the 

above equation about u∗ is given by 

 

in Ω with homogeneous Neumann boundary 
conditions on ∂Ω, where v is the linearised 

approximation to uˆ and J ∗ is the Jacobian matrix 
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The method of separation of the variables is a common 
way of finding the linear system solution with a 
constant coefficient. First of all, let's assume that we 
know the F(x) function that fulfils – all2F = ŚF in all the 
same conditions on the Neumann boundary on all the 
same. (F is an Eigen function of − für 2 on − for − for 
the border and ć for its own value). A V function of a V 
form (t, x) = cF(x)exp(μt) is considered. It satisfies the 
linearised equation and the boundary conditions if 

 

So   and c are the proprietary value and matrix A = αJ 
all the corresponding propvector −  D. Let us describe 

the spatial modes to be the original Fn(x) of −∇2 on 
Ω and the corresponding own values should be the 
Spatial Eigen functions. We know from Fourier's study 
that every function on Álvarez can be written in linear 
spatial modes, so that v may be written as 

 

It follows after separation of variables and some linear 
algebra that the general solution of the linearised 
equation may be put into the form 

 

where  are arbitrary constants. are the 

eigenvalues of the matrix  
which we shall refer to as the temporal eigenvalue of 
the problem when we need to distinguish them from the 
spatial eigenvalues λn. The eigenvalues σni of An 
satisfy 

 

These are polynomials of mth order, so that m 
eigenvalues  σn1,are found in each of them. If  0i has a 
real negative part for all I but  ni has a real positive 
part for some I and n  0 then we conclude that it's turing 
instability. Let's look at the last equation a little more 
closely, which shows us the relationship between 
spatial and temporal values. First we can evaluate the 
equation if the spatial value of the space is not 
negative. 

 

For each λ this is a polynomial of degree m solutions σi 
. Let 

 

with the most tangible part of the immovable part. A 
relation of time and space value such as this is usually 
referred to as a dispersion relationship between ρ and 
λ. 

9. Stochastic process and random function  

A random feature is a random family of variables Xt = 
Xt(ω) that take values in a certain SP space and 
depends on a certain T-parameter. When the 

parameter set T is part of the true line: T ⊆ R; when we 
interpret t as time; and if we interpret Xt as a movement 
of a random point in the space SP, then random 
function Xt is called a stochastic operation. The 
parameter set T 

Stochastic differential equation  

A stochastic differential equation is a differential 
equation where one or more terms are a stochastic 
process, resulting in a stochastic solution. 

Langevin equation  

Langevin equation is an additive white noise linear 
stochastic differential equation. Langevin invented it 
to explain Brown's motion in 1908. The definition 
refers to the noisy differential equation, in which you 
divide the movement into two parts, a structural part 
which changes slowly and an altering part which 
differs quickly. For the moisture of a spontaneously 
forced particle 

 

Spectral density and Auto-covariance function 

The auto-covariance of the random function X(t) is 
defined by 

 

The spectral density of the random function X(t) is 
defined as the Fourier transform of the auto-
covariance function CX(τ ) (taking T −→ ∞) 

 

The inverse of the spectral density is the auto-
covariance 
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CONCLUSION 

A key concept in ecosystem analysis is that of stability. 
Many instances of ecological interaction with the word 
"instability" are possible. As a statistically formalized 
version of the more general scientific concept of a 
deterministic process, the idea of the dynamical system 
is extremely important. Mathematical principles had a 
major impact on the modeling and interpretation of 
many biological events. In exchange, biology has 
helped mathematicians with a number of challenging 
issues. Statistical biology, often known as bio-
mathematics, is a growing field thanks to the 
connections it has made between mathematics and 
biological dynamics. To quantify how populations of 
organisms are affected by their physical surroundings, 
statisticians have developed the field of statistical 
ecology and epidemiology. Discovering and 
comprehending the myriad fundamental processes and 
intricate behaviors of a wide range of flora, fauna, and 
microorganisms has been greatly aided by statistical 
modeling. Statistical models of ecological systems 
have attracted a lot of attention. Ecological theory in 
biological sciences, to put it another way. Statistics-
minded mathematicians have a long history of 
involvement in the field of population biology, making it 
the most statistically advanced subfield of biology. 
Population biology is fundamentally a quantitative 
discipline. As a result, we'd like to think about, clarify, 
and predict things like the effects of immigration, 
emigration, population mixing, and age systems on the 
population, among other things. Strong interactions 
have emerged in recent years between the many 
branches of Nonlinear Science as a result of several 
significant theoretical, computational, and experimental 
developments. Mathematical biology's model equations 
also contain a wide variety of non-linear effects (e.g. 
hysteresis, structural instability, dissipative structures, 
dynamic chaos etc.). In the last twenty years, nonlinear 
dynamics has been increasingly useful in simulating a 
wide range of biological and physiological processes. 
Because of its critical importance, we have devised 
both deterministic and stochastic methods, taking into 
account non-linear dynamic models of complex 
ecosystems or epidemiologic processes. The normal 
functioning of structural functions, as well as their 
stability, periodicity, stochastic bifurcation, fluctuations, 
and pattern formation, have all been investigated. We 
also talked about how thermodynamics and statistical 
mechanics can be used to the study of ecological 
systems with a high degree of complexity. 
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