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Abstract - Long before computers, differential equations were used to model and analyze a wide range of 
physical, biological, and engineering systems. However, with the development of computing technologies 
and the need to take discrete events into account, researchers' focus has shifted to a subset of 
equations known as differential difference equations (DDEs). The purpose of this work is to survey the 
state of knowledge on differential equations and discuss how these advancements may be used to the 
study of differential difference equations. The study starts out by providing a primer on ODEs and PDEs, 
the two types of differential equations most often used to represent continuous systems, and their 
fundamental ideas. It then goes on to explain how DDEs came to be as an extension of ODEs, which 
allowed for delayed effects and discrete time steps. The many uses of dynamical systems equations 
(DDEs) are discussed. These use cases range from population dynamics to physiological systems to 
control theory. 

Keywords - Certain Differential, Equations Relevant, Differential difference equations  
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1. INTRODUCTION 

For quite some time, differential equations have been 
an indispensable tool for the mathematical modeling 
and analysis of events in many scientific disciplines, 
including physics, biology, engineering, and 
economics. They provide a robust framework for 
studying the dynamics and history of non-discrete 
systems. However, the study of differential difference 
equations (DDEs) has evolved as a specialist subject 
within the domain of differential equations as the 
necessity to account for discrete occurrences and 
delayed effects has grown more common. 

In order to more accurately depict real-world dynamics, 
differential difference equations go beyond the ideas of 
ordinary differential equations (ODEs) by integrating 
discrete time steps and delayed effects. These 
equations are useful in many contexts where delays or 
other discrete events play an important role, including 
population dynamics, economics, control theory, and 
epidemiology.[1] 

This survey aims to give readers with an in-depth 
summary of current breakthroughs in differential 
equations research that are directly applicable to the 
analysis of differential difference equations. We want to 
emphasize the importance of differential equations in 
understanding and evaluating dynamic systems with 
discrete features by investigating the relationships 
between classical differential equations and their 
discrete equivalents. 

The review begins out with an introduction to the 
basic ideas and analytical tools used in the study of 
ordinary differential equations. We highlight the role 
of ordinary differential equations (ODEs) in the 
modeling of continuous-time systems and describe 
many techniques for analytical and quantitatively 
solving ODEs. The foundation for grasping the 
generalization to differential difference equations 
has thus been laid.[2] 

Partial differential equations (PDEs) are the next 
topic of study after ordinary differential equations 
(ODEs). In addition to their widespread use in 
physics, fluid dynamics, and heat transport, PDEs 
play a significant role in the modeling of systems 
with spatial variation. Differential difference 
equations are discussed in relation to the solution 
methods and numerical techniques utilized for 
PDEs. 

Now that we have laid this groundwork, we may 
focus on differential difference equations (DDEs). 
We provide a definition of DDEs and emphasize its 
unique features, such as the use of discrete time 
steps and the presence of delayed effects. We 
discuss why it is worthwhile to study DDEs and 
highlight their many practical applications in areas 
as varied as population dynamics, economics, and 
control systems. 

Following this general discussion, the study shifts its 
attention to the analysis and solution techniques that 
are relevant to differential difference equations. In 
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the framework of DDEs, we cover a wide range of 
subjects, including stability analysis methods, 
bifurcation theory, and chaos. Discrete temporal delays 
and their effect on the dynamics of the system are 
given special consideration. 

The relationships between differential difference 
equations and other areas are also investigated, 
including delay differential equations (DDEs), time-
delay systems, and neural networks. We illustrate how 
knowledge gained from these areas may be used to 
deepen our understanding of differential difference 
equations by focusing on the commonalities between 
them. 

The difficulties of researching differential difference 
equations are also discussed in this article. We talk 
about how difficult it is to analyze and solve DDE 
models computationally, as well as how to find the right 
delay functions. Techniques for numerical 
approximation and other high-level mathematical tools 
are only two examples of the many methods given here 
that have been created to meet these issues.[3] 

1.1 Emergence and significance of differential 
difference equations (DDEs) 

To represent dynamic systems with discrete events 
and temporal delays, differential difference equations 
(DDEs) arise as a mathematical framework. These 
equations are generalizations of ODEs that take into 
account both discrete time steps and delayed effects. 
DDEs are mathematically significant because of their 
ability to faithfully model the operation of systems in the 
actual world that exhibit discrete properties. DDEs may 
be represented mathematically using equations of the 
type: 

 

where the system's current state variables are denoted 
by x(t), the derivative of x with respect to time is 
denoted by x'(t), f is a function that links x(t) and x(t - ), 
and is the time delay.[4] 

Time delays may be accounted for by plugging in the 
phrase x(t - ) to the equation. The length of time 
required to reach every part of the system is called the 
propagation time. It is the modeled system and the 
connections between its variables that determine the 
exact shape of the function f(x(t), x(t - )).. 

The existence of temporal delays makes it difficult to 
analytically solve DDEs. Numerical approaches, 
stability analysis, and bifurcation theory are only some 
of the mathematical tools created to deal with DDEs. 
Approximating solutions numerically is possible using 
numerical techniques like Runge-Kutta methods and 
finite difference methods. Analyzing stability entails 
looking at how solutions act and figuring out whether or 
not the system is stable or prone to oscillations. As the 
parameters or delay values change, bifurcation theory 

analyzes the resulting qualitative shifts in the system's 
behavior. 

DDEs are significant in mathematics because they may 
be used in many different areas, from population 
dynamics to control theory to economics to 
neuroscience. DDEs enable for a more accurate 
modeling of systems with delays and discrete events, 
shedding light on their dynamics and behavior. They 
allow for more precise and in-depth investigation into 
phenomena including population expansion, control 
system stability, economic decision-making, and neural 
network dynamics.[5] 

1.2 Ordinary Differential Equations (ODEs) 

The interactions between an unknown function and its 
derivatives in a single independent variable are 
described by Ordinary Differential Equations (ODEs), a 
special kind of differential equation. They are used to 
simulate a broad variety of continuous-time events in 
mathematics, physics, engineering, and other scientific 
fields. ODEs are crucial in the study and forecasting 
of dynamical system behavior. 

In mathematics, an ODE is written as: 

 

where x is the free variable, y(x) is the function of 
interest, y' is the first derivative of y with respect to 
x, y'' is the second derivative, and y(n) is the nth 
derivative. In order to solve the problem, we need to 
know how F connects the function y and its 
derivatives. 

Different kinds of ODEs may be distinguished 
according to their order and linearity. The highest 
derivative of an ODE is used to establish its order. 
First-order ODEs, for instance, only need the first 
derivative, but second-order ODEs require both the 
first and second derivatives. Concerning the 
unknown function and its derivatives, linearity 
indicates whether the equation is linear or 
nonlinear.[6] 

Finding a function y(x) that answers the given 
problem is the key to solving ordinary differential 
equations. Analytical or numerical methods may be 
used to get the answers. For an analytical solution, 
one must derive an explicit formula for the y(x) 
function such that the equation holds. This is doable 
for well-understood ODE classes including 
separable, linear, and exact equations. On the other 
hand, analytical answers aren't always accessible or 
even possible to find. 

Approximate solutions to ODEs are often found 
using numerical techniques. The independent 
variable is discretized, and difference quotients are 
used to approximate the derivatives. The answers 
may be approximated numerically using techniques 
like Euler's, Runge-Kutta, and finite difference 
methods. When working with complicated or 
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nonlinear ODEs, or when analytical solutions are 
unavailable, these techniques shine.[7] 

ODEs are useful in many scientific and technical 
contexts. Particle motion, electrical circuits, fluid 
movement, population dynamics, chemical reactions, 
and many more phenomena are only few of the many 
that may be modeled and analyzed using these tools. 
Insights into the behavior and development of dynamic 
systems, as well as the ability to forecast their 
behavior, create effective control measures, and 
comprehend the fundamental mathematical principles 
driving these systems, may be gained by solving or 
studying ODEs. 

1.2.1 Fundamental concepts and analytical 
techniques 

i. Fundamental Concepts: 

Order: The maximum derivative in an ordinary 
differential equation (ODE) establishes the ODE's 
order. For instance, the first derivative (represented by 
the symbol y') is not used in a first-order ODE, but the 
second derivative (represented by the symbol y'') is 
used in a second-order ODE.[8] 

Example: The first-order ODE is represented as: 

 

in which the function f(x, y) is known. 

Linearity: When the unknown function and its 
derivatives can be expressed as a linear combination, 
we say that the ODE is linear. In other words, there is 
no multiplication or exponentiation involved when the 
unknown function and its derivatives are expressed as 
a power of 1. 

Example: Second-order linear ODE is written as: 

 

where the functions a(x), b(x), c(x), and f(x) are 
defined. 

ii. Analytical Techniques: 

Separation of Variables: The method may be used for 
certain first-order ODEs. It requires integrating each 
sides of the equation independently, with the variables 
on their respective sides separated. In many cases, the 
unknown function may be solved explicitly in this way. 

Example: Think about the ODE of the first order. 

 

in which the functions g(x) and h(y) are provided. 

The equation may be rewritten using variable 
separation as: 

 

Combining approaches produces  

 

letting us work backwards from x to find y. 

Linear ODEs: Common methods for solving linear 
ODEs include the integration by factors approach, 
parameter variation, and identifying the corresponding 
complementary function and integral. These strategies 
entail changing the equation so that it's easier to work 
with, or finding specific solutions depending on the 
shape of the right-hand side.. 

Example: Take the linear homogeneous second 

order as an example. 

 

where the functions p(x) and q(x) are known.  

Under the premise that a solution of the kind  

 

The defining equation may be derived.: 

 

The general answer may be written by solving this 
equation for its roots r1 and r2:  

 

starting circumstances define the constants C1 and 
C2. 

Exact Equations: A first-order ordinary differential 
equation (ODE) is an exact equation if and only if it 
has the form:  

 

where M and N are variables that depend on x and 
y. In order to solve an equation exactly, one must 
first identify a function known as the potential 
function or integrating factor. Then, integrate the 
potential function to get the answer.. 

Example: Think about the precise equation: 

 

The accuracy is tested by seeing whether 
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If they are equivalent, then integrating M with respect to 
x and N with respect to y will give us the potential 
function (x, y).  

The answer is obtained by solving for and then treating 
it as a constant.. 

1.2.2  Numerical methods for solving ODEs 

Several branches of science and engineering depend 
critically on numerical techniques for solving ordinary 
differential equations (ODEs). By discretizing the 
independent variable and estimating the derivatives 
and then iteratively calculating the solution on a 
discrete grid, these techniques approximate the true 
solution. We will provide explicit equations for various 
frequently used numerical techniques for solving 
ODEs.[9] 

Euler's technique is a straightforward approach to 
numerical computation. The derivative is approximated 
using the forward difference formula, which is then 
used to estimate the answer. A first-order ordinary 
differential equation of the form:  

 

This is how we may approximate the answer at x1 
given the beginning conditions (x0, y0):: 

 

Here, h represents the step size, which determines the 
size of each time step. The method proceeds by 
iteratively calculating the solution at subsequent grid 
points using the formula: 

 

Euler's technique is a straightforward and natural way 
to approximate the answer to an ODE. It is well-known, 
however, that it has accuracy and stability issues. 

Runge-Kutta techniques are often utilized because of 
their great precision. One of the most popular 
implementations is the fourth-order Runge-Kutta (RK4) 
algorithm. The derivatives are assessed at various 
points within the time step, and the intermediate values 
are then calculated.  

Here is the equation for RK4: 

 

Slopes at different points in time are indicated by k1, 
k2, k3, and k4. The next approximation is obtained by 
adding the weighted average of these slopes to the 
present answer. 

To estimate the derivative, Adams-Bashforth 
techniques use previous evaluations of the function to 
form an explicit multistep approximation. These 
strategies improve precision by using a collection of 
previously determined function values. Adams-
Bashforth's k-order formula is as follows:: 

 

The derivative at xn is denoted by fn, while the 
coefficients b1, b2,..., bk are fixed values. 
Coefficients may be found in mathematical tables 
and are dependent on the method order. 

Other typical numerical techniques for solving ODEs 
include finite difference approaches. These 
techniques make use of difference formulae to 
approximate the ODE's derivatives. As an example, 
think about the core difference approach. The 
derivative at any given grid point may be 
approximately calculated using values of nearby 
functions thanks to discretization. Approximating the 
first derivative using the central difference formula 
is: 

 

Here,  

 

 represent the values of the function at neighboring 
grid points, where h is the size of the step. 

1.3. Applications of ODEs in continuous-time 
systems 

The use of ordinary differential equations (ODEs) in 
modeling and evaluating the behavior of continuous-
time systems is widespread. Differential equations 
(ODEs) provide a mathematical vocabulary for 
describing the dynamical change of such systems 
over time. In this article, we explore the 
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mathematical language of ODEs and their applications 
in continuous-time systems: 

Physics and Engineering: ODEs are widely used in 
physics and engineering because of their ability to 
accurately represent the dynamics of physical systems. 
The force exerted on an object is related to its mass 
and acceleration by Newton's second law, a second-
order ordinary differential equation. ODEs are used to 
simulate phenomena in a wide variety of engineering 
fields, including fluid dynamics, heat transport, 
electrical circuits, control systems, and structural 
mechanics. They make it easier to mathematically 
characterize and analyze the behavior of complex 
systems, as well as to forecast how they will react to a 
variety of inputs and disturbances.[10] 

Population Dynamics: The study of population 
dynamics relies heavily on ordinary differential 
equations (ODEs) because they provide a 
mathematical explanation of the growth and decline of 
a population. These models provide light on complex 
biological processes including species relationships, 
disease transmission, and ecological networks. 
Common ODE models include the logistic equation, 
which describes population increase subject to finite 
resources. 

Epidemiology: Providing a mathematical foundation, 
ODEs are crucial in epidemiology for modeling the 
spread of infectious illnesses. Epidemiological models 
based on ODEs are useful for studying the dynamics of 
disease transmission, estimating model parameters, 
forecasting the spread of illness, and assessing the 
efficacy of preventative measures like vaccination and 
social isolation. Models like SIR (Susceptible-
Infectious-Recovered) and its derivatives are widely 
used instances of this kind. 

Chemical Reactions and Reaction Kinetics: 
Chemical reaction rates and the dynamic behavior of 
reacting systems are described by ordinary differential 
equations. The field of chemical kinetics investigates 
the how and the how fast of chemical processes. The 
temporal dependence of reactant concentrations, 
reaction rates, and other features of chemical systems 
may be understood and predicted using kinetic models 
based on ordinary differential equations (ODEs). This 
information is crucial for the fields of pharmaceuticals, 
manufacturing, and environmental chemistry. 

Biomedical Modeling: In order to simulate a wide 
variety of biological processes and physiological 
systems, ODEs are widely used in the biomedical 
sciences. The fields of pharmacokinetics and 
pharmacodynamics (which examine how and where 
drugs behave in the body), as well as brain dynamics, 
cardiac electrophysiology, and biological oscillators, all 
make use of these techniques. Complex biological 
systems may be modeled using ODE tools, allowing for 
simulation and analysis that improves our knowledge of 
illnesses, medication interactions, and therapeutic 
approaches. 

1.4. Partial Differential Equations (PDEs) 

Mathematical equations involving partial derivatives of 
an unknown function with regard to a number of 
independent variables are called partial differential 
equations (PDEs). They are used to explain events in 
physics that exhibit spatial or temporal changes. In a 
nutshell, a PDE may be formulated as follows: 

 

F is a mathematical equation that links the function, its 
partial derivatives, and maybe the independent 
variables, where x and t are the independent variables 
and u is the unknown function. The equation describes 
the dynamic or static balance between the function and 
its derivatives.[11] 

A PDE's shape and properties are unique to the 
physical issue being addressed. Various PDEs are 
useful for modeling certain phenomena. Some 
typical examples of PDEs are listed below: 

i. Elliptic Equations 

Second-order derivatives are required for the 
description of steady-state issues in elliptic 
equations.  

For instance, consider the Laplace equation: 

 

ii. Parabolic Equations 

The first-order derivative with regard to time and the 
second-order derivative with respect to space are 
both involved in the solution of parabolas. Diffusion 
and heat conduction issues are described.  

The heat equation is a famous example of a 
parabolic formula: 

 

iii. Hyperbolic Equations 

Time and space derivatives of the second order are 
required for hyperbolic equations. They explain how 
waves form and how signals or disturbances travel 
across space.  

The wave equation is a well-known case in point: 

 

where the speed of the wave, c, is shown. 

Boundary conditions and beginning conditions are 
required to solve a partial differential equation. The 
solution's behavior at the problem's borders is 
specified by boundary conditions. Dirichlet 
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conditions (which specify the value of the solution), 
Neumann conditions (which specify the derivative of 
the solution), and mixed conditions are all possible 
forms. The system's starting state at a particular 
moment is defined by the initial conditions. 

Obtaining analytical solutions to PDEs is generally 
difficult and is only attainable in a restricted class of 
situations. As a result, approximation techniques based 
on numerical approaches are often utilized. There are a 
variety of numerical approaches used to solve PDEs, 
including finite difference methods, finite element 
methods, and spectral methods. These techniques 
discretize the domain and reformat the PDE as an 
algebraic system amenable to numerical methods of 
solution. 

PDEs have many practical uses in the sciences and 
engineering. Fluid dynamics, heat transport, 
electromagnetic fields, quantum physics, population 
dynamics, and many more phenomena may all be 
modeled using them. Researchers can examine 
physical processes, develop designs, and forecast the 
behavior of complex systems by solving PDEs.. 

1.5 Differential Difference Equations (DDEs) 

Differential difference equations (DDEs) need taking 
into account both the present and the previous values 
of the unknown function in order to arrive at a solution. 
Because of the difficulty in obtaining exact analytical 
solutions, DDEs are often approximated using 
numerical approaches. In this article, I will discuss the 
many numerical techniques that may be utilized to 
address DDEs. 

Discretizing the time domain and transforming the DDE 
into a system of ordinary differential equations (ODEs) 
or difference equations is a typical numerical 
technique. Because of this, we may use the same 
numerical methods developed for ODEs and difference 
equations. DDE is a basic example, so let's use it: 

 

The not-yet-known function is denoted by x(t), the 
derivative of this function over time by x'(t), a known 
function f, and a delay t denoted by. 

Step-by-step integration is one strategy that may be 
used to numerically solve this DDE. We can use finite 
difference approximations to get a close approximation 
of the derivative by discretizing the time domain into 
short intervals. For instance, we may approximate 
using forward differences: 

 

with a step size of h.  

When this approximation is plugged into the DDE, we 
get a difference equation: 

 

By shuffling the terms around, we can get the solution, 
x(t+h) 

 

Based on the current and historical values of x(t), this 
equation approximates x(t+h). This method may be 
repeated to calculate x at several time intervals. 

Numerical integration techniques, such as the Runge-
Kutta method, provide another option for resolving the 
DDE. In this scenario, the DDE is converted into an 
integral equation, and the integral is approximated 
using numerical methods. In order to solve the integral 
equation, we must do an evaluation of the function 
f(x(t), x(t-)) for a set of x(t) values in the past. Time 
delays may be accounted for by numerical integration 
techniques due to their skill in dealing with integrals 
including previous values.[12] 

DDEs may also be solved by combining the 
technique of stages with numerical integration 
methods. The term "step method with interpolation" 
describes this technique. The integral equation with 
the time delay is approximated using numerical 
integration, and the values of x at each time step are 
computed using the resultant interpolated function. 

2. LITERATURE REVIEW 

Panagiota, K. K. & Mary, K. (2016) Differential-
difference equations are a special case of 
differential equations, and the subject of Golubitsky 
and Schaeffer's seminal work. The authors 
investigate discrete-delay systems, focusing on 
stability theory, oscillations, and bifurcation analysis. 
Differential-difference equations' behavior may be 
understood and analyzed with the use of these solid 
mathematical underpinnings. This book examines 
the impact of discrete delays on the stability 
attributes of the systems, including topics like 
Lyapunov stability and stability zones. Furthermore, 
it delves into the dynamics of periodic and chaotic 
solutions, illuminating the impact of delay on the 
system's behavior.[13] 

Feudel, F.& Bichler, R. (2020) Bellman and 
Cooke's seminal work provides a thorough 
introduction to differential-difference equations and 
is widely regarded as a classic in the area. 
Fundamental ideas, stability analysis, and numerical 
approaches are all covered, providing a firm 
grounding in differential-difference equations. The 
authors provide stability criteria and their 
implications for both linear and nonlinear systems. 
Finite difference methods and numerical integration 
schemes are only two examples of the numerical 
approaches for approximating solutions that are 
presented. Even though it was published decades 
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ago, this book is still an important resource for scholars 
and professionals.[14] 

Chaudhary, A. K. (2018) This article helps us better 
comprehend differential-difference equations, even if it 
covers a wider set of functional differential equations. 
Differential-difference equations are studied, together 
with their stability analysis and the qualitative behavior 
of their solutions. This book explores the dynamics and 
long-term behavior of differential-difference equations, 
both linear and nonlinear. The book also highlights the 
use of differential-difference equations in other fields 
outside physics, control theory, and biology. This 
material provides a more all-encompassing view of the 
usefulness of differential-difference equations by 
emphasizing their practical significance.[15] 

Butcher, J. C. (2015) Differential-difference equations 
and their stability theory are the subject of this study. 
For both autonomous and nonautonomous differential-
difference equations, the authors give stability analysis 
methods such as Lyapunov stability, asymptotic 
stability, and exponential stability. Both linear and 
nonlinear differential-difference equations are covered, 
together with stability requirements and criteria. 
Differential-difference equations and their bifurcations 
are studied, as is the stability analysis of periodic 
solutions. Researchers interested in the stability 
features of differential-difference equations may find 
this resource invaluable.[16] 

Abbasbandy, S., (2017) In the 1990s, researchers 
began using the wavelet approach to address 
differential and integral problems. its absence of a clear 
expression is its main flaw. Due of this difficulty, 
differentiating and integrating these wavelets is 
challenging. The integration of wavelet product and 
derivative integrals presents a numerical challenge 
when nonlinearities are included in a model. This may 
be accomplished by including connection coefficients 
into the Galerkin technique, albeit this approach is 
limited in its applicability. differential equations using 
the Galerkin method's connection coefficients. Due of 
the wavelet solutions' complexity, several gloomy 
predictions have been made. "The competition with 
other methods is severe," write Strang and Nguyen. 
We make no guarantees that wavelets will emerge 
victorious.[17] 

W.H. Al-Barakati (2019) fractional constant Several 
publications have used interpolation splines to 
regularize the Haar function. The second approach 
uses the integral technique, which involves expanding 
the largest derivative in the differential equation into the 
Haar series. This method, which has been 
implemented for the Haar wavelets, incorporates the 
boundary conditions by means of integration constants. 
Essentially, what this method does is it takes a 
differential equation and turns it into an algebraic 
equation. The choice of solution steps is crucial for the 
Chen and Hsiao technique; if the step is too tiny, the 
coefficient matrix may be virtually singular, and 
inverting it leads to instability. recognized that by 
dividing the interval of integration into certain parts, 

computational complexity might be decreased; he 
named this technique the reduced Haar transform. In 
the case of the Chen and Hsiao technique, the number 
of collocation sites in each segment is significantly 
reduced. This technique is known as "piecewise 
constant approximation" because it assumes that the 
greatest derivative remains constant across 
segments.[18] 

Babolian, E. (2019) Whoever initially calculated a Haar 
operational matrix for the integrals of the Haar function 
vector is credited with starting the field of system 
analysis using Haar wavelets. Then, someone 
developed a Haar product matrix and a coefficient 
matrix, laying the groundwork for further work in state 
analysis of time-varying nonlinear singular systems 
using Haar wavelets. proposed the Haar wavelet 
approach as a numerical technique for solving 
higher order differential equations, integral 
equations, and partial differential equations in two 
dimensions. solution of differential equations using 
the Haar wavelet approach, which relies on a weak 
formulation. For differential, fractional differential, 
integral, and integro-differential equations, Lepik 
developed the Haar wavelet approach. employing 
Haar wavelets to numerically solve second-order 
nonlinear Fredholm integral equations.[19] 

Cattani, C., (2015) explained how to solve fractional 
order differential equations using the Haar wavelet 
operational matrix. solution of nonlinear oscillator 
equations and nonlinear dynamics for stiff systems 
using the single-term Haar wavelet series (STHWS). 
Wave equations and convection-diffusion equations 
may be solved using the Haar wavelet approach. an 
application of the Haar wavelet technique to 
nonlinear fractional differential equations. First-kind 
integral equations on a limited interval were solved. 
Haar wavelets as a discretization approach for 
fractional order integrals. using wavelets to solve 
fractional-order nonlinear partial differential 
equations. solved the Fredholm equations using the 
Haar wavelet method. integration matrix for 
operational Haar wavelets. a comparison of the 
performance of the Haar wavelet approach to that of 
other methods, such as the Adomain Decomposition 
approach (ADM) and the Runge-Kutta method 
(RKM), for second-order boundary value issues.[20] 

3. CONCLUSION 

In conclusion, this review has shown how important 
differential difference equations (DDEs) are and how 
far the subject of differential equations has come. 
Differential delay equations (DDEs) have arisen as a 
subclass of differential equations due to the 
increasing requirement to represent systems having 
both continuous and discrete components. In this 
overview, we have looked at how DDEs have been 
used in a number of different contexts, such as 
population dynamics, physiological systems, and 
control theory. DDEs are able to more faithfully 
portray the dynamics of the actual world because 
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they include both discrete time steps and delayed 
effects. 
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