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Abstract - The purpose of providing estimates in software projects is to aid professionals in making 
more accurate predictions about the costs of software development, which in turn affects the efficacy of 
the software process's preparatory and operational activities. However, software development 
organizations sometimes struggle to provide estimates that accurately reflect the true work required to 
carry out the tasks associated with a software project. Despite the fact that methods for estimating labor 
have been presented in the literature, doing so remains difficult. Machine learning (ML) methods have 
recently been used to address this issue. With the use of ML methods, datasets containing the results of 
previously completed projects may be used to generate more accurate estimates. In this research, we 
have explored the application of machine learning methods to the problem of estimating the time 
required to develop software. The need for software projects is growing, necessitating the constant 
evolution of both computer software and hardware. Competition among businesses to provide high-
quality goods in a timely manner at a reasonable price has intensified as demand for software projects 
has grown. The purpose of this study is to carefully examine ML models by looking at them from four 
different angles: ML method, estimate accuracy, model comparison, and estimation context. 
Researchers will find this paper's review of effort estimate using machine learning methods helpful in 
charting the course of future work on the use of machine learning to the estimation of software 
development efforts. 
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INTRODUCTION 

Managing a software product's whole life cycle is the 
goal of software development, which entails a series of 
software engineering tasks. Planning, development, 
and maintenance are the three primary stages of a 
software product's life cycle (Boehm, 1984). The 
software development process requires the 
establishment of a set of rules and guidelines that 
apply to each stage [1]. 

An integral aspect of any software development 
lifecycle model is the estimation of software effort. In 
this method, we ensure that you get reliable, high-
quality software on schedule and within your set 
budget. The amount of work or money needed to 
create a piece of software is used to illustrate this. For 
many software tasks, such as gathering requirements, 
conducting tests, and performing maintenance, 
estimating software development time may be thought 
of as a super domain [2]. The amount of work needed 
to finish a piece of software at each step of the process 
varies depending on the software development life 
cycle model used. 13% to 15% of all software projects 

fail to accomplish the objective due of incorrect 
planning and overruns of schedules, which is 
witnessed in the software business these decades, 
and this makes it difficult for software engineers to 
estimate the efforts appropriately[3].Expert-based 
techniques for estimating and planning have a poor 
success rate, thus software project teams are under 
growing pressure to replace them with more 
objective approaches, such as those based on 
measurement and analysis [4]. 

RELATED WORK 

Farah Alhamdany (2022)[5] has proposedSoftware 
Effort Estimation (SEE) to provide an accurate 
estimate of the time required to develop a piece of 
software (in terms of person–hours or person–
months). Even though there are a lot of effort 
estimationmodels for it, Software Effort Estimation 
(SEE) remains one of the trickiest challenges in 
creating high-quality software. The field of SEE has 
seen a number of model proposals. Over or 
underestimating the time and energy needed to 
complete software projects might result in the 
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project being scrapped. As a result, this study's primary 
objective is to develop a performance model for 
assessing software effort by conducting empirical 
comparisons using different Machine Learning (ML) 
techniques. Seven datasets have been used with 
various ML algorithms for Effort Estimation. Software 
development effort estimation is evaluated on the 
following datasets: China, Albrecht, Maxwell, 
Desharnais, Kemerer, Cocomo81, and Kitchenham. 
Root Mean Squared Error, Mean Absolute Error, and 
the area under the receiver operating characteristic 
curve (R-Squared) were all taken into account as 
assessment measures. When compared to other ML 
techniques for software effort estimate, the LASSO 
approach using the China dataset performed the best 
in both theoretical and practical settings. 

Eliane et.al.(2022) [6] suggestto infer software 
development time and effort from a textual description 
of requirements. Recent efforts in this area of Natural 
Language Processing (NLP) use context-less 
embedding models, which are typically insufficient for 
properly differentiating each examined phrase. Only 
lately have contextualized pre-trained embedding 
models developed, which have shown to be much 
more successful than context-less models in describing 
textual properties. To better describe textual 
requirements that are used to infer effort estimates by 
analogy, this research recommends assessing the 
efficacy of pre-trained embedding models. In both the 
context-free and contextualized methods, generic pre-
trained models underwent a process of fine-tuning. A 
deep learning architecture is applied to the created 
models, and the resulting linear output is then utilised. 
Insight into the viability of using contextualized pre-
trained embedding models to estimate software work 
from requirements texts alone was gained, and the 
findings were highly encouraging. 

Ripu Ranjan Sinha (2021)[7] used the techniquesfor 
estimating the time and money needed to complete a 
product or piece of software are utilized. The project's 
deadline and budget will grow if the estimates are off, 
which might lead to the project's eventual collapse. In 
software engineering, estimating models and methods 
are put to use in a variety of contexts, including 
budgeting, risk analysis, planning, and so on. In 
Software Development Life Cycle (SDLC), it is crucial 
to accurately estimate the amount of work involved to 
prevent budget overruns and schedule delays. There 
are two main types of effort estimating methods: a) 
parametric and computational, b) non-parametric and 
ad hoc. There has been research on non-algorithmic 
procedures, such as those based on soft-computing 
techniques, as a means of getting over the restrictions 
imposed by algorithmic models. Parkinson, expert 
judgment, machine learning (ML), and pricing to win 
are examples of methods that aren't algorithms. In 
order to address the problems inherent in parametric 
estimate methods, ML models have been developed. 
Contemporary project management and development 
benefit from these concepts as well. Models that aren't 
algorithms include things like neural networks, fuzzy 
logic, genetic algorithms, case-based reasoning, etc. 

This article provides a comprehensive overview of 
existing machine learning (ML) approaches to software 
effort assessment, including their strengths and 
weaknesses, potential future directions of study, and 
current state-of-the-art. 

Mamta Pandey (2020) [8] One of the most important 
steps in developing software is determining how much 
it will cost. In the context of "classical" software, certain 
tried-and-true approaches and techniques have been 
created for estimating work. The existing estimating 
methods for conventional desktop or online 
applications may not be suited for mobile app 
development due to the inherent differences in nature, 
size, and operating environment between the two. To 
that end, this study sets out to provide a methodology 
for calculating the costs of developing mobile 
applications. This study uses a research strategy 
based on sampling several mobile app characteristics 
from the SAMOA dataset. This data is then sent into 
the chosen ML methods as input vectors. Mean 
absolute residual (MAR) is the unit of analysis for this 
study. Following the results of the experiments, a 
framework is proposed to suggest an ML algorithm 
as the best fit for improved effort estimate of the 
project at hand. In order to resolve the dilemmas 
inherent in the decision-making process, this 
framework employs a Mamdani-type fuzzy inference 
technique. The results of this study will be useful for 
a variety of audiences, but especially for those who 
estimate the time and resources needed to build 
mobile apps. 

Ahmed BaniMustafa (2018)[9] The ability to 
accurately predict future outcomes is essential in 
software engineering. Therefore, impacting the 
overall success of software development, by 
changing its cost and needed work. Software 
projects have risks of running late and over budget 
due to the error margin in Expert-Based, Analogy-
Based, and algorithmic based methodologies like 
COCOMO (COnstructiveCOstMOdel), Function 
Point Analysis, and Use-Case-Points. We suggest a 
new approach, based on data mining of past 
records, to improve estimate accuracy. In order to 
make this forecast, the authors of this study propose 
employing Naive Bayes, Logistic Regression, and 
Random Forests, three machine learning algorithms 
that were previously applied to preprocessed data 
from the COCOMO NASA benchmark, which 
included 93 projects. Five-fold cross-validation was 
used to test the created models, and Classification 
Accuracy, Precision, Recall, and Area Under the 
Curve were used to assess their performance. 
COCOMO estimate was then compared to the 
findings of the estimation. When compared to the 
COCOMO model, all of the implemented methods 
performed well. However, a combination of Naive 
Bayes and Random Forests yielded the greatest 
results. While Naive Bayes' ROC curve and Recall 
score were superior to those of the other two 
methods, Random Forests' Confusion Matrix and 
Classification Accuracy and Precision scores were 
higher. This study verifies the usefulness of data 
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mining for software estimation in general, and of the 
used approach in particular. 

PROPOSED METHODOLOGY 

The primary research was located via six online 
libraries: IEEExplor, ACMDigital Library, Science 
Direct, Web of Science, SCOPUS, and Google 
Scholar. As far as the effort estimate community is 
concerned, these digital libraries constitute the gold 
standard [10]. Figure 1 depicts a search query string 
that may be used to a certain database in order to get 
papers that address the research questions presented 
there. 

 

Figure 1: Search String[10] 

Inclusion criteria:  

 Estimating programming time using ML 
methods. 

 Preparing modeling data using machine 
learning.  

 Using a hybrid model to predict development 
time, which uses at least two different ML 
methods or combines ML with a non-ML 
approach (such a statistics method, fuzzy set, 
or rough set). 

 Analyses that evaluate ML models in relation to 
one another or to non-ML models. 

 For studies that include both a conference 
version and a journal version, only the journal 
version will be included. 

 Only the most recent and comprehensive 
publication of a given research will be included 
if several versions of the same study have 
been published. 

Exclusion criteria:  

 To estimate software's size, timeline, or time 
but not its effort. 

 Predicting how much time will be needed for 
upkeep or testing. 

 Resolving problems with software project 
management and organization (e.g., 
scheduling, staff allocation, development 
process). 

 Papers that just serve as reviews won't be 
considered. 

Quality Assessment (QA) 

We developed a battery of quality evaluation questions 
to evaluate the research' rigor, trustworthiness, and 
applicability. Table 1 displays the questions that will be 
asked. QA1, QA7, QA8, and QA10 are all built off of. 
There are just three possible responses to each 
question: "Y for Yes", "P for Partly", or "N for No". Here 
is how each of these three responses is weighted: 
‗‗Yes‘‘ = 1, ‗‗Partly‘‘ = 0.5, and ‗‗No‘‘ = 0. The quality 
score of research may be calculated by adding up the 
points awarded to the various QA questions [11]. The 
quality of the studies was independently evaluated by 
two review authors. Researchers addressed their 
varying opinions on the quality evaluation findings 
and came to an accord. This review's conclusions 
should be trusted since we extracted and 
synthesized data from only studies of sufficient 
quality to be included in this review, namely those 
with quality scores above 5 (or 50% of maximum 
possible). 

Table 1: Quality assessment questions [11] 

 

As a field, ML based SDEEhas 168 studies that we 
found. The years 1991 to 2010 cover the time frame 
of these articles' publication. One hundred and 
eighty-nine (70%) were published in journals, 48% in 
conference proceedings, and 1% in a book. Table 2 
displays the locations at which the included studies 
were published. Main sources include Information 
and Software Technology (IST), IEEE Transactions 
on Software Engineering (TSE), Journal of Systems 
and Software (JSS), and Empirical Software 
Engineering (EMSE). This study draws on 88 
papers, 52% of which are gathered from four highly-
regarded software engineering magazines. Except 
for one case study, all of the investigations were 
experimental studies; no survey studies were 
included in the review. It is not guaranteed that the 
validation findings adequately represent the actual 
conditions in business, even if most of the chosen 
studies did employ at least one project data set from 
industry to evaluate ML models [12]. In reality, it is 
possible that the implementation of ML approaches 
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in SDEE practice is still in its early stages due to the 
absence of case study and survey data from the 
business sector. We consider the chosen studies to be 
of excellent quality since our study selection technique 
mandated that each research's quality score be more 
than 5 (note that a perfect score of quality evaluation is 
10). Table 3 shows that the quality of the chosen 
studies is generally excellent or very high, with 70% 
(116 of 168) falling into this category. 

Table 2: Places where certain research articles can 
be published and made available to the public. 

Publication venue Type 
# Of 

studies Percent 

Information and Software 
Technology (IST) Journal 28 16 

IEEE Transactions on 
Software Engineering (TSE) Journal 24 14 

Journal of Systems and 
Software (JSS) Journal 18 11 

Empirical Software 
Engineering (EMSE) Journal 18 11 

Expert Systems with 
Applications Journal 8 5 

International Conference on 
Predictive Models in 
Software Engineering 
(PROMISE) Conference 8 5 

International Software 
Metrics Symposium 
(METRICS) Conference 8 5 

International Symposium on 
Empirical Software 
Engineering and 
Measurement (ESEM) Conference 6 4 

International Conference on 
Tools with Artificial 
Intelligence (ICTAI) Conference 6 4 

International Conference on 
Software Engineering 
(ICSE) Conference 4 2 

Journal of Software 
Maintenance and Evolution: 
Research and Practice Journal 4 2 

Others  36 21 

Total  168 100 

Table 3: Studies' Quality and Relevance. 

Quality level # Of studies Percent 

Very high (8.5 ≤ score ≤ 
10) 24 6.7 

High (7 ≤ score ≤ 8) 92 25.7 

Medium (5.5 ≤ score≤ 
6.5) 52 14.5 

Low (3 ≤ score ≤ 5) 140 39.1 

Very low (0 ≤ score ≤ 
2.5) 50 14.0 

Total 358 100 

 

TYPES OF ML TECHNIQUES USED 

Out of these investigations, we are able to identify 
eight distinct ML methods used for software 
development effort estimation. Here is a rundown of 
all of them.Case-Based Reasoning (CBR), Artificial 
Neural Networks (ANN), Decision Trees (DT), 
Bayesian Networks (BN), Support Vector 
Regression (SVR), Genetic Algorithms (GA), 
Genetic Programming (GP), Association Rules (AR). 
CBR, ANN, and DT are the three most often utilized 
ML approaches; combined, they were used by 80% 
of the chosen studies (Fig. 3). The specifics of how 
each research made use of ML methods [13]. Only 
the total amount of attention paid to research on 
each ML approach during the previous two decades 
is shown in Fig. 3.  

 

Figure 3: Distribution of research projects 
across various machine learning methods. 

PRECISION OF ML MODEL ESTIMATES 

Due to the fact that ML models are data-driven, 
previous project information is crucial for both the 
model building and validation phases. It is important 
to consider both the validation technique used and 
the historical project data set used to build and test 
the ML model's estimate accuracy.All of the 
machine learning models discussed here were built 
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and tested using a wide range of archived project data. 
The most commonly utilized data sets combined with 
their related metadata are provided in Table 4. Data set 
type (inside or across firm), number of projects in the 
data set, data set source, and proportion of studies 
using the data set are all pieces of information that are 
pertinent to the question at hand. In terms of validation 
strategies, the chosen studies mostly use Holdout, 
Leave-One-Out Cross-Validation (LOOCV), and n-fold 
Cross-Validation (n > 1) [14]. To be more precise, 32 
studies (38%), 31 studies (37%), and 16 studies (19%) 
respectively employed Holdout, LOOCV, and n-fold 
Cross-Validation as their validation techniques of 
choice. 

When assessing ML models, it is important to take into 
account not just the data set and validation approach, 
but also the accuracy measure. The precision of an 
effort estimate may be evaluated using a number of 
metrics, each of which measures accuracy in a 
somewhat different way. That's why it's so important to 
use the right criteria for measuring precision when 
assessing the precision of estimates. It is revealed in 
the chosen research that MMRE (Mean Magnitude of 
Relative Error), Pred (Percentage of predictions that 
are within 25% of the actual value), and MdMRE 
(Median Magnitude of Relative Error) are the three 
most common accuracy measures. Specifically, the 
numbers (percentages) of the studies that employed 
these three indicators are 75 (89%) for MMRE, 55 
(65%) for Pred, and 31 (37%) for MdMRE. In this 
evaluation, we used the widely-used MMRE, Pred, and 
MdMRE metrics to measure the estimate accuracy of 
ML models.Box plots (Fig. 5a-c) show the distributions 
of MMRE, Pred, and MdMRE values of ML models, 
which we utilized to visualize the estimate accuracy. 
We didn't include MMRE or Pred for AR in the relevant 
statistics since there weren't enough observations to 
make a meaningful box plot. It is for this reason that 
Fig. 5c does not include box plots of MdMRE for SVR, 
GP, and AR. 

A better estimate is denoted by a smaller MMRE and 
MdMRE and a larger Pred. In terms of MMRE and Pred 
(see Fig. 5a and b), ANN and SVR perform best 
(median MMRE around 35% and median Pred around 
70%), followed by CBR, DT, and GP (median MMRE 
and median Pred around 50% for each), while BN 
performs worst (median MMRE around 100% and 
median Pred around 30%). In terms of ML model 
performance as evaluated by MdMRE (see Fig. 5c), 
CBR and ANN both have median MdMREs close to 
30%, whereas BN and DT both have median MdMREs 
close to 45%. In addition to what has already been 
mentioned, we can see from Fig. 5a that the median 
MMRE values for CBR, ANN, DT, BN, and GP are all 
very close to the center of their respective boxes, 
indicating that the MMRE values for these ML models 
are distributed symmetrically around their medians. In 
contrast, the distribution of MMRE values for SVR 
exhibits a slight negative skewness. Figure 5a further 
demonstrates that the MMRE values for CBR, ANN, 
SVR, and GP are more consistent than those for DT 

and BN, thanks to their smaller standard deviations and 
shorter confidence intervals. 

Intuitively grasping the estimate accuracy of ML models 
is made possible with the help of Fig. 5's box plots.  

Table 4: Examples of Data Sets Used in the 
Development and Testing of Machine Learning 

Models 

 

 

W = within-company, C = cross-company 

 

Figure 5: a)  Plots of MMRE 

 

Figure 5: b) Plots of Pred 
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Figure 5: c)  Plots of MdMRE 

We focus on the 4.25 MAE value and 0.17 standard 
deviation achieved by using the contextualized pre-
trained model BERT with fine-tuning in a single 
repository including many projects. When compared to 
other works, this reflects a highly good outcome. The 
suggested estimate approach has the potential for 
generalization, is fast, and requires few computer 
resources. The fine-tuning procedure offers this benefit 
by reducing the amount of work needed to fulfill either 
new or current needs. 

VALIDITY THREATS 

This section explains threats to the validity of this paper 
regarding internal, external and construct validity.  

 To correctly extract the data from the selected 
studies, five authors of this study read each 
paper independently. The data extracted for 
each paper were compared. All disagreements 
on data quality were discussed among all 
authors, and the consensus was eventually 
reached. The only best estimation accuracy 
obtained from the optimal configuration of the 
ensemble and solo techniques was extracted. 
However, there might still be a bias in data 
extraction; nevertheless, using the optimal 
configuration is a good way to minimize the 
bias.  

 The accuracy values of the estimation are 
extracted from papers focusing on solo and 
ensemble effort estimation (EEE) models.  

 In addition, these values are derived from 
various experimental designs involving the 
selection of techniques, data sets, data 
preparation, and employing the method used to 
validate the model. Note that all of these steps 
directly affect the accuracy of estimations.  

 It is nonetheless believed that the estimation 
accuracy results obtained from various 
experimental designs are more robust than 
those from a uniform design.  

This study used publicly and non-publicly domain 
datasets. The projects are collected from different 
countries and organizations, and their features are 
diverse. This makes them adequate for evaluating the 
accuracy of solo and ensemble effort estimation 
techniques. However, it will be beneficial to replicate 
this study using other machine learning techniques and 
datasets with similar characteristics [15]. The purpose 
of construct validity is to answer the question of the 
reliability of the performances measured through this 
study. Since this study focuses only on the accuracy of 
effort estimates, two evaluation criteria [MMRE (Mean 
Magnitude Relative Error), PRED]are used. The main 
reasons behind this choice are that these performance 
criteria are unbiased, less fragile, and commonly used 
in asymmetry assumptions. Additionally, there are 
several other metrics that are less vulnerable to 
asymmetry assumptions such as Mean Inverted 
Balanced Relative Error (MIBRE) and Mean Balanced 
Relative Error (MBRE) that can also be used to assess 
the proposed technique. 

CONCLUSION 

As a result of the work presented in this article, we 
have advanced the field of software project 
estimating. For this study, we zeroed emphasis on 
the ensemble and solo methods of effort estimate 
that are based on machine learning. Our 
participation in this study is twofold. To begin, we 
investigated the current state of the art in the field of 
effort estimating, both in terms of ensemble and 
individual methods. By adhering to the standard 
procedure for a Systematic Literature Review (SLR) 
in the field of software engineering, we were able to 
successfully solicit primary research. Second, we 
used widely-used accuracy performance measures 
(MMRE and PRED) to PD and NPD datasets and 
compared and assessed both methods. Our study 
may serve as a springboard for more research in 
this area. Our study findings will help developers 
choose an appropriate effort estimate method for 
their future software projects. Case-based reasoning 
(CBR), ANN, DT, BN, SVR, GA, GP, and 
association rules are only some of the ML methods 
that have been implemented in SDEE (AR). The 
most popular ones are CBR, ANN, and DT. Most ML 
models have estimation accuracy that is nearly 
acceptable. The average MMRE for ML models is 
about 35%, the average PredMRE is around 45%, 
and the average MdMRE is around 50%. In addition, 
the average MMRE for ANN is about 35%, whereas 
for CBR and DT it is approximately 50% and 55%, 
respectively. Studies consistently show that ML 
models outperform non-ML models in terms of 
accuracy. The most common alternative to ML 
models is the regression model. 
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