

Manas Prasad Rout1*, Prof. Sabyasachi Pattnaik2

w
w

w
.i
g

n
it

e
d

.i
n

193

 Journal of Advances in Science and Technology
Vol. 19, Issue No. 2, April-2022, ISSN 2230-9659

Analysis: The application of different Machine
Learning Techniques for Software effort

Estimation

Manas Prasad Rout1*, Prof. Sabyasachi Pattnaik2

1
 Research Scholar, F.M. University, Balasore, Odisha, India

2
 Professor, F.M. University, Balasore, Odisha, India

Abstract - The purpose of providing estimates in software projects is to aid professionals in making
more accurate predictions about the costs of software development, which in turn affects the efficacy of
the software process's preparatory and operational activities. However, software development
organizations sometimes struggle to provide estimates that accurately reflect the true work required to
carry out the tasks associated with a software project. Despite the fact that methods for estimating labor
have been presented in the literature, doing so remains difficult. Machine learning (ML) methods have
recently been used to address this issue. With the use of ML methods, datasets containing the results of
previously completed projects may be used to generate more accurate estimates. In this research, we
have explored the application of machine learning methods to the problem of estimating the time
required to develop software. The need for software projects is growing, necessitating the constant
evolution of both computer software and hardware. Competition among businesses to provide high-
quality goods in a timely manner at a reasonable price has intensified as demand for software projects
has grown. The purpose of this study is to carefully examine ML models by looking at them from four
different angles: ML method, estimate accuracy, model comparison, and estimation context.
Researchers will find this paper's review of effort estimate using machine learning methods helpful in
charting the course of future work on the use of machine learning to the estimation of software
development efforts.

Keywords – Software, Effort Estimation, Machine Learning Techniques, Software Development.

- X -

INTRODUCTION

Managing a software product's whole life cycle is the
goal of software development, which entails a series of
software engineering tasks. Planning, development,
and maintenance are the three primary stages of a
software product's life cycle (Boehm, 1984). The
software development process requires the
establishment of a set of rules and guidelines that
apply to each stage [1].

An integral aspect of any software development
lifecycle model is the estimation of software effort. In
this method, we ensure that you get reliable, high-
quality software on schedule and within your set
budget. The amount of work or money needed to
create a piece of software is used to illustrate this. For
many software tasks, such as gathering requirements,
conducting tests, and performing maintenance,
estimating software development time may be thought
of as a super domain [2]. The amount of work needed
to finish a piece of software at each step of the process
varies depending on the software development life
cycle model used. 13% to 15% of all software projects

fail to accomplish the objective due of incorrect
planning and overruns of schedules, which is
witnessed in the software business these decades,
and this makes it difficult for software engineers to
estimate the efforts appropriately[3].Expert-based
techniques for estimating and planning have a poor
success rate, thus software project teams are under
growing pressure to replace them with more
objective approaches, such as those based on
measurement and analysis [4].

RELATED WORK

Farah Alhamdany (2022)[5] has proposedSoftware
Effort Estimation (SEE) to provide an accurate
estimate of the time required to develop a piece of
software (in terms of person–hours or person–
months). Even though there are a lot of effort
estimationmodels for it, Software Effort Estimation
(SEE) remains one of the trickiest challenges in
creating high-quality software. The field of SEE has
seen a number of model proposals. Over or
underestimating the time and energy needed to
complete software projects might result in the

Manas Prasad Rout1*, Prof. Sabyasachi Pattnaik2

w
w

w
.i
g

n
it

e
d

.i
n

194

 Analysis: The application of different Machine Learning Techniques for Software effort Estimation

project being scrapped. As a result, this study's primary
objective is to develop a performance model for
assessing software effort by conducting empirical
comparisons using different Machine Learning (ML)
techniques. Seven datasets have been used with
various ML algorithms for Effort Estimation. Software
development effort estimation is evaluated on the
following datasets: China, Albrecht, Maxwell,
Desharnais, Kemerer, Cocomo81, and Kitchenham.
Root Mean Squared Error, Mean Absolute Error, and
the area under the receiver operating characteristic
curve (R-Squared) were all taken into account as
assessment measures. When compared to other ML
techniques for software effort estimate, the LASSO
approach using the China dataset performed the best
in both theoretical and practical settings.

Eliane et.al.(2022) [6] suggestto infer software
development time and effort from a textual description
of requirements. Recent efforts in this area of Natural
Language Processing (NLP) use context-less
embedding models, which are typically insufficient for
properly differentiating each examined phrase. Only
lately have contextualized pre-trained embedding
models developed, which have shown to be much
more successful than context-less models in describing
textual properties. To better describe textual
requirements that are used to infer effort estimates by
analogy, this research recommends assessing the
efficacy of pre-trained embedding models. In both the
context-free and contextualized methods, generic pre-
trained models underwent a process of fine-tuning. A
deep learning architecture is applied to the created
models, and the resulting linear output is then utilised.
Insight into the viability of using contextualized pre-
trained embedding models to estimate software work
from requirements texts alone was gained, and the
findings were highly encouraging.

Ripu Ranjan Sinha (2021)[7] used the techniquesfor
estimating the time and money needed to complete a
product or piece of software are utilized. The project's
deadline and budget will grow if the estimates are off,
which might lead to the project's eventual collapse. In
software engineering, estimating models and methods
are put to use in a variety of contexts, including
budgeting, risk analysis, planning, and so on. In
Software Development Life Cycle (SDLC), it is crucial
to accurately estimate the amount of work involved to
prevent budget overruns and schedule delays. There
are two main types of effort estimating methods: a)
parametric and computational, b) non-parametric and
ad hoc. There has been research on non-algorithmic
procedures, such as those based on soft-computing
techniques, as a means of getting over the restrictions
imposed by algorithmic models. Parkinson, expert
judgment, machine learning (ML), and pricing to win
are examples of methods that aren't algorithms. In
order to address the problems inherent in parametric
estimate methods, ML models have been developed.
Contemporary project management and development
benefit from these concepts as well. Models that aren't
algorithms include things like neural networks, fuzzy
logic, genetic algorithms, case-based reasoning, etc.

This article provides a comprehensive overview of
existing machine learning (ML) approaches to software
effort assessment, including their strengths and
weaknesses, potential future directions of study, and
current state-of-the-art.

Mamta Pandey (2020) [8] One of the most important
steps in developing software is determining how much
it will cost. In the context of "classical" software, certain
tried-and-true approaches and techniques have been
created for estimating work. The existing estimating
methods for conventional desktop or online
applications may not be suited for mobile app
development due to the inherent differences in nature,
size, and operating environment between the two. To
that end, this study sets out to provide a methodology
for calculating the costs of developing mobile
applications. This study uses a research strategy
based on sampling several mobile app characteristics
from the SAMOA dataset. This data is then sent into
the chosen ML methods as input vectors. Mean
absolute residual (MAR) is the unit of analysis for this
study. Following the results of the experiments, a
framework is proposed to suggest an ML algorithm
as the best fit for improved effort estimate of the
project at hand. In order to resolve the dilemmas
inherent in the decision-making process, this
framework employs a Mamdani-type fuzzy inference
technique. The results of this study will be useful for
a variety of audiences, but especially for those who
estimate the time and resources needed to build
mobile apps.

Ahmed BaniMustafa (2018)[9] The ability to
accurately predict future outcomes is essential in
software engineering. Therefore, impacting the
overall success of software development, by
changing its cost and needed work. Software
projects have risks of running late and over budget
due to the error margin in Expert-Based, Analogy-
Based, and algorithmic based methodologies like
COCOMO (COnstructiveCOstMOdel), Function
Point Analysis, and Use-Case-Points. We suggest a
new approach, based on data mining of past
records, to improve estimate accuracy. In order to
make this forecast, the authors of this study propose
employing Naive Bayes, Logistic Regression, and
Random Forests, three machine learning algorithms
that were previously applied to preprocessed data
from the COCOMO NASA benchmark, which
included 93 projects. Five-fold cross-validation was
used to test the created models, and Classification
Accuracy, Precision, Recall, and Area Under the
Curve were used to assess their performance.
COCOMO estimate was then compared to the
findings of the estimation. When compared to the
COCOMO model, all of the implemented methods
performed well. However, a combination of Naive
Bayes and Random Forests yielded the greatest
results. While Naive Bayes' ROC curve and Recall
score were superior to those of the other two
methods, Random Forests' Confusion Matrix and
Classification Accuracy and Precision scores were
higher. This study verifies the usefulness of data

Manas Prasad Rout1*, Prof. Sabyasachi Pattnaik2

w
w

w
.i
g

n
it

e
d

.i
n

195

 Journal of Advances in Science and Technology
Vol. 19, Issue No. 2, April-2022, ISSN 2230-9659

mining for software estimation in general, and of the
used approach in particular.

PROPOSED METHODOLOGY

The primary research was located via six online
libraries: IEEExplor, ACMDigital Library, Science
Direct, Web of Science, SCOPUS, and Google
Scholar. As far as the effort estimate community is
concerned, these digital libraries constitute the gold
standard [10]. Figure 1 depicts a search query string
that may be used to a certain database in order to get
papers that address the research questions presented
there.

Figure 1: Search String[10]

Inclusion criteria:

 Estimating programming time using ML
methods.

 Preparing modeling data using machine
learning.

 Using a hybrid model to predict development
time, which uses at least two different ML
methods or combines ML with a non-ML
approach (such a statistics method, fuzzy set,
or rough set).

 Analyses that evaluate ML models in relation to
one another or to non-ML models.

 For studies that include both a conference
version and a journal version, only the journal
version will be included.

 Only the most recent and comprehensive
publication of a given research will be included
if several versions of the same study have
been published.

Exclusion criteria:

 To estimate software's size, timeline, or time
but not its effort.

 Predicting how much time will be needed for
upkeep or testing.

 Resolving problems with software project
management and organization (e.g.,
scheduling, staff allocation, development
process).

 Papers that just serve as reviews won't be
considered.

Quality Assessment (QA)

We developed a battery of quality evaluation questions
to evaluate the research' rigor, trustworthiness, and
applicability. Table 1 displays the questions that will be
asked. QA1, QA7, QA8, and QA10 are all built off of.
There are just three possible responses to each
question: "Y for Yes", "P for Partly", or "N for No". Here
is how each of these three responses is weighted:
‗‗Yes‘‘ = 1, ‗‗Partly‘‘ = 0.5, and ‗‗No‘‘ = 0. The quality
score of research may be calculated by adding up the
points awarded to the various QA questions [11]. The
quality of the studies was independently evaluated by
two review authors. Researchers addressed their
varying opinions on the quality evaluation findings
and came to an accord. This review's conclusions
should be trusted since we extracted and
synthesized data from only studies of sufficient
quality to be included in this review, namely those
with quality scores above 5 (or 50% of maximum
possible).

Table 1: Quality assessment questions [11]

As a field, ML based SDEEhas 168 studies that we
found. The years 1991 to 2010 cover the time frame
of these articles' publication. One hundred and
eighty-nine (70%) were published in journals, 48% in
conference proceedings, and 1% in a book. Table 2
displays the locations at which the included studies
were published. Main sources include Information
and Software Technology (IST), IEEE Transactions
on Software Engineering (TSE), Journal of Systems
and Software (JSS), and Empirical Software
Engineering (EMSE). This study draws on 88
papers, 52% of which are gathered from four highly-
regarded software engineering magazines. Except
for one case study, all of the investigations were
experimental studies; no survey studies were
included in the review. It is not guaranteed that the
validation findings adequately represent the actual
conditions in business, even if most of the chosen
studies did employ at least one project data set from
industry to evaluate ML models [12]. In reality, it is
possible that the implementation of ML approaches

Manas Prasad Rout1*, Prof. Sabyasachi Pattnaik2

w
w

w
.i
g

n
it

e
d

.i
n

196

 Analysis: The application of different Machine Learning Techniques for Software effort Estimation

in SDEE practice is still in its early stages due to the
absence of case study and survey data from the
business sector. We consider the chosen studies to be
of excellent quality since our study selection technique
mandated that each research's quality score be more
than 5 (note that a perfect score of quality evaluation is
10). Table 3 shows that the quality of the chosen
studies is generally excellent or very high, with 70%
(116 of 168) falling into this category.

Table 2: Places where certain research articles can
be published and made available to the public.

Publication venue Type
Of

studies Percent

Information and Software
Technology (IST) Journal 28 16

IEEE Transactions on
Software Engineering (TSE) Journal 24 14

Journal of Systems and
Software (JSS) Journal 18 11

Empirical Software
Engineering (EMSE) Journal 18 11

Expert Systems with
Applications Journal 8 5

International Conference on
Predictive Models in
Software Engineering
(PROMISE) Conference 8 5

International Software
Metrics Symposium
(METRICS) Conference 8 5

International Symposium on
Empirical Software
Engineering and
Measurement (ESEM) Conference 6 4

International Conference on
Tools with Artificial
Intelligence (ICTAI) Conference 6 4

International Conference on
Software Engineering
(ICSE) Conference 4 2

Journal of Software
Maintenance and Evolution:
Research and Practice Journal 4 2

Others 36 21

Total 168 100

Table 3: Studies' Quality and Relevance.

Quality level # Of studies Percent

Very high (8.5 ≤ score ≤
10) 24 6.7

High (7 ≤ score ≤ 8) 92 25.7

Medium (5.5 ≤ score≤
6.5) 52 14.5

Low (3 ≤ score ≤ 5) 140 39.1

Very low (0 ≤ score ≤
2.5) 50 14.0

Total 358 100

TYPES OF ML TECHNIQUES USED

Out of these investigations, we are able to identify
eight distinct ML methods used for software
development effort estimation. Here is a rundown of
all of them.Case-Based Reasoning (CBR), Artificial
Neural Networks (ANN), Decision Trees (DT),
Bayesian Networks (BN), Support Vector
Regression (SVR), Genetic Algorithms (GA),
Genetic Programming (GP), Association Rules (AR).
CBR, ANN, and DT are the three most often utilized
ML approaches; combined, they were used by 80%
of the chosen studies (Fig. 3). The specifics of how
each research made use of ML methods [13]. Only
the total amount of attention paid to research on
each ML approach during the previous two decades
is shown in Fig. 3.

Figure 3: Distribution of research projects
across various machine learning methods.

PRECISION OF ML MODEL ESTIMATES

Due to the fact that ML models are data-driven,
previous project information is crucial for both the
model building and validation phases. It is important
to consider both the validation technique used and
the historical project data set used to build and test
the ML model's estimate accuracy.All of the
machine learning models discussed here were built

Manas Prasad Rout1*, Prof. Sabyasachi Pattnaik2

w
w

w
.i
g

n
it

e
d

.i
n

197

 Journal of Advances in Science and Technology
Vol. 19, Issue No. 2, April-2022, ISSN 2230-9659

and tested using a wide range of archived project data.
The most commonly utilized data sets combined with
their related metadata are provided in Table 4. Data set
type (inside or across firm), number of projects in the
data set, data set source, and proportion of studies
using the data set are all pieces of information that are
pertinent to the question at hand. In terms of validation
strategies, the chosen studies mostly use Holdout,
Leave-One-Out Cross-Validation (LOOCV), and n-fold
Cross-Validation (n > 1) [14]. To be more precise, 32
studies (38%), 31 studies (37%), and 16 studies (19%)
respectively employed Holdout, LOOCV, and n-fold
Cross-Validation as their validation techniques of
choice.

When assessing ML models, it is important to take into
account not just the data set and validation approach,
but also the accuracy measure. The precision of an
effort estimate may be evaluated using a number of
metrics, each of which measures accuracy in a
somewhat different way. That's why it's so important to
use the right criteria for measuring precision when
assessing the precision of estimates. It is revealed in
the chosen research that MMRE (Mean Magnitude of
Relative Error), Pred (Percentage of predictions that
are within 25% of the actual value), and MdMRE
(Median Magnitude of Relative Error) are the three
most common accuracy measures. Specifically, the
numbers (percentages) of the studies that employed
these three indicators are 75 (89%) for MMRE, 55
(65%) for Pred, and 31 (37%) for MdMRE. In this
evaluation, we used the widely-used MMRE, Pred, and
MdMRE metrics to measure the estimate accuracy of
ML models.Box plots (Fig. 5a-c) show the distributions
of MMRE, Pred, and MdMRE values of ML models,
which we utilized to visualize the estimate accuracy.
We didn't include MMRE or Pred for AR in the relevant
statistics since there weren't enough observations to
make a meaningful box plot. It is for this reason that
Fig. 5c does not include box plots of MdMRE for SVR,
GP, and AR.

A better estimate is denoted by a smaller MMRE and
MdMRE and a larger Pred. In terms of MMRE and Pred
(see Fig. 5a and b), ANN and SVR perform best
(median MMRE around 35% and median Pred around
70%), followed by CBR, DT, and GP (median MMRE
and median Pred around 50% for each), while BN
performs worst (median MMRE around 100% and
median Pred around 30%). In terms of ML model
performance as evaluated by MdMRE (see Fig. 5c),
CBR and ANN both have median MdMREs close to
30%, whereas BN and DT both have median MdMREs
close to 45%. In addition to what has already been
mentioned, we can see from Fig. 5a that the median
MMRE values for CBR, ANN, DT, BN, and GP are all
very close to the center of their respective boxes,
indicating that the MMRE values for these ML models
are distributed symmetrically around their medians. In
contrast, the distribution of MMRE values for SVR
exhibits a slight negative skewness. Figure 5a further
demonstrates that the MMRE values for CBR, ANN,
SVR, and GP are more consistent than those for DT

and BN, thanks to their smaller standard deviations and
shorter confidence intervals.

Intuitively grasping the estimate accuracy of ML models
is made possible with the help of Fig. 5's box plots.

Table 4: Examples of Data Sets Used in the
Development and Testing of Machine Learning

Models

W = within-company, C = cross-company

Figure 5: a) Plots of MMRE

Figure 5: b) Plots of Pred

Manas Prasad Rout1*, Prof. Sabyasachi Pattnaik2

w
w

w
.i
g

n
it

e
d

.i
n

198

 Analysis: The application of different Machine Learning Techniques for Software effort Estimation

Figure 5: c) Plots of MdMRE

We focus on the 4.25 MAE value and 0.17 standard
deviation achieved by using the contextualized pre-
trained model BERT with fine-tuning in a single
repository including many projects. When compared to
other works, this reflects a highly good outcome. The
suggested estimate approach has the potential for
generalization, is fast, and requires few computer
resources. The fine-tuning procedure offers this benefit
by reducing the amount of work needed to fulfill either
new or current needs.

VALIDITY THREATS

This section explains threats to the validity of this paper
regarding internal, external and construct validity.

 To correctly extract the data from the selected
studies, five authors of this study read each
paper independently. The data extracted for
each paper were compared. All disagreements
on data quality were discussed among all
authors, and the consensus was eventually
reached. The only best estimation accuracy
obtained from the optimal configuration of the
ensemble and solo techniques was extracted.
However, there might still be a bias in data
extraction; nevertheless, using the optimal
configuration is a good way to minimize the
bias.

 The accuracy values of the estimation are
extracted from papers focusing on solo and
ensemble effort estimation (EEE) models.

 In addition, these values are derived from
various experimental designs involving the
selection of techniques, data sets, data
preparation, and employing the method used to
validate the model. Note that all of these steps
directly affect the accuracy of estimations.

 It is nonetheless believed that the estimation
accuracy results obtained from various
experimental designs are more robust than
those from a uniform design.

This study used publicly and non-publicly domain
datasets. The projects are collected from different
countries and organizations, and their features are
diverse. This makes them adequate for evaluating the
accuracy of solo and ensemble effort estimation
techniques. However, it will be beneficial to replicate
this study using other machine learning techniques and
datasets with similar characteristics [15]. The purpose
of construct validity is to answer the question of the
reliability of the performances measured through this
study. Since this study focuses only on the accuracy of
effort estimates, two evaluation criteria [MMRE (Mean
Magnitude Relative Error), PRED]are used. The main
reasons behind this choice are that these performance
criteria are unbiased, less fragile, and commonly used
in asymmetry assumptions. Additionally, there are
several other metrics that are less vulnerable to
asymmetry assumptions such as Mean Inverted
Balanced Relative Error (MIBRE) and Mean Balanced
Relative Error (MBRE) that can also be used to assess
the proposed technique.

CONCLUSION

As a result of the work presented in this article, we
have advanced the field of software project
estimating. For this study, we zeroed emphasis on
the ensemble and solo methods of effort estimate
that are based on machine learning. Our
participation in this study is twofold. To begin, we
investigated the current state of the art in the field of
effort estimating, both in terms of ensemble and
individual methods. By adhering to the standard
procedure for a Systematic Literature Review (SLR)
in the field of software engineering, we were able to
successfully solicit primary research. Second, we
used widely-used accuracy performance measures
(MMRE and PRED) to PD and NPD datasets and
compared and assessed both methods. Our study
may serve as a springboard for more research in
this area. Our study findings will help developers
choose an appropriate effort estimate method for
their future software projects. Case-based reasoning
(CBR), ANN, DT, BN, SVR, GA, GP, and
association rules are only some of the ML methods
that have been implemented in SDEE (AR). The
most popular ones are CBR, ANN, and DT. Most ML
models have estimation accuracy that is nearly
acceptable. The average MMRE for ML models is
about 35%, the average PredMRE is around 45%,
and the average MdMRE is around 50%. In addition,
the average MMRE for ANN is about 35%, whereas
for CBR and DT it is approximately 50% and 55%,
respectively. Studies consistently show that ML
models outperform non-ML models in terms of
accuracy. The most common alternative to ML
models is the regression model.

REFRENCES

1. Boehm BW. 1984. Software engineering
economics. IEEE Transactions on Software

Manas Prasad Rout1*, Prof. Sabyasachi Pattnaik2

w
w

w
.i
g

n
it

e
d

.i
n

199

 Journal of Advances in Science and Technology
Vol. 19, Issue No. 2, April-2022, ISSN 2230-9659

Engineering 10(1):4–21 DOI
10.1109/TSE.1984.5010193.

2. Choudhary, K. (2010). GA Based Optimization
of Software Development Effort Estimation.
International Journal Of Computer Science And
Technology, Vol.(1), pg. 38–40.

3. Dan, Z. (2013). Improving the accuracy in
software effort estimation: Using artificial
neural network model based on particle swarm
optimization. In Proceedings of 2013 IEEE
International Conference on Service
Operations and Logistics, and Informatics,
SOLI 2013(pp. 180–185).

4. Garbajosa, J. (2008). The emerging ISO
International Standard for Certification of
Software Engineering Professionals. In IFIP
International Federation for Information
Processing (Vol. 280, pp. 173–178).

5. alhamdany, farah, and laheeb Ibrahim.
―Software Development Effort Estimation
Techniques: A Survey.‖ مجلةالتربيةوالعلم, vol. 31,
no. 1, Mar. 2022, p. 80,
https://doi.org/10.33899/edusj.2022.132274.12
01.

6. Eliane Maria De BortoliFávero, Dalcimar
Casanova, Andrey Ricardo Pimentel, ―SE3M: A
model for software effort estimation using pre-
trained embedding models,‖ Information and
Software Technology, Volume 147, 2022,
106886, ISSN 0950-5849,
https://doi.org/10.1016/j.infsof.2022.106886.

7. Sinha, Ripu Ranjan & Gora, Rajani. (2021).
Software Effort Estimation Using Machine
Learning Techniques. 10.1007/978-981-15-
5421-6_8.

8. Mamta Pandey, RatneshLitoriya, and Prateek
Pandey, ―International Journal of Software
Engineering and Knowledge

Engineering‖ 2020 30:01, 23-41

9. A.BaniMustafa, "Predicting Software Effort
Estimation Using Machine Learning
Techniques," 2018 8th International
Conference on Computer Science and
Information Technology (CSIT), 2018, pp. 249-
256, doi: 10.1109/CSIT.2018.8486222.

10. Maleki, I., Ghaffari, A., &Masdari, M. (2014). A
New Approach for Software Cost Estimation
with Hybrid Genetic Algorithm and Ant Colony
Optimization. International Journal of
Innovation and Applied Studies, 5(1), 72–81

11. Missier, P., Lalk, G., Verykios, V., Grillo, F.,
Lorusso, T., &Angeletti, P. (2003). Improving
data quality in practice: A case study in the

italian public administration. Distributed and
Parallel Databases, 13(2), 135– 160.

12. Rajper*, S., & and Zubair A. Shaikh. (2016).
Software Development Cost Estimation
Approaches - A Survey. Indian Journal of
Science and Technology, 9((31)), pg.1–5.

13. Sandhu, G. S. (2014). A Bayesian Network
Model of the Particle Swarm Optimization for
Software Effort Estimation tool. International
Journal of Computer Applications, 96(4), 52–
58.

14. Vu Nguyen, Bert Steece, B. B., Nguyen, V.,
Steece, B., Boehm, B., & Vu Nguyen, Bert
Steece, B. B. (2008). A Constrained
Regression Technique for COCOMO
Calibration. Acm 978-1-59593-971-5/08/10,
1– 10.

15. Borade, J. G., &Khalkar, V. R. (2013).
Software Project Effort and Cost Estimation
Techniques. International Journal of
Advanced Research in Computer Science
and Software Engineering, 3(8), pg. 730–
739.

Corresponding Author

Manas Prasad Rout*

Research Scholar, F.M. University, Balasore,
Odisha, India

https://doi.org/10.33899/edusj.2022.132274.1201
https://doi.org/10.33899/edusj.2022.132274.1201

