

Dr. J. K. Navis Vigilia1*, Dr. V. Margret Ponrani2

w
w

w
.i
g

n
it

e
d

.i
n

13

 Journal of Advances in Science and Technology
Vol. 19, Issue No. 3, September-2022, ISSN 2230-9659

Dynamic Communication Networks- Evolving
Graphs

Dr. J. K. Navis Vigilia1*, Dr. V. Margret Ponrani2

1
Assistant Professor, Department Of Mathematics, Jyoti Nivas College Autonomous, Bengaluru.

2
Assistant Professor, Department of Mathematics, Jyoti Nivas College Autonomous, Bengaluru.

Abstract - New technologies and the deployment of mobile and nomadic services are driving the
emergence of complex com- munications networks, that have a highly dynamic behavior. Modeling such
dynamics, and designing algorithms that take it into account, received considerable attention recently. In
this paper, we introduce the evolving graphs, a simple model which aims at harnessing the complexity of
an evolving setting as yielded by dynamic communication networks. We exemplify its use through the
computation of shortest paths under different hypotheses in fixed-schedule dynamic networks.

Keywords - Dynamic networks, models, algorithms, evolving graphs, radio networks, shortest paths.

- X -

INTRODUCTION

The advent of new technological communication
networks, such as the Internet and ad-hoc radio
networks, highly motivates the study of several facets
of the dynamic behavior of such networks. The
underlying mobility of users and/or relays is just one of
the factors that contribute to their dynamics. Others
include varying link congestion, node and link faults,
and components addition and deletion.

The related domain of dynamic graphs has been
extensively studied in the past decade (see
[DFMSN01] and references therein). In this case, some
property (e.g. a minimum spanning tree) of an input
graph is computed, and algorithms are given in order to
maintain such a property after the graph is modified
(typically an addition/deletion of a vertex/edge). One
could say that the discrete step is one modification
undergone by the graph.

The field of communications in dynamic networks, i.e.,
networks with evolving characteristics, also re- ceives
considerable attention [GAGPK01, KRR+00, LLS01],
and even several research projects are already tackling
this important issue [ARC, COL, Eur]. Most papers in
this area define a network as a graph, and let p be a
fault probability for each edge. At each time step, each
edge is kept independently at random with probability
p. Problems studied under such a random-fault model
are, for instance, fault-tolerant routing and the
computation of large fault-free connected components
[Sch02]. A good example of stochastic mod- els for
dynamic networks appears in papers presenting
research on the graph of the Web, like in [KRR+00]. In
[Vie01], motivated by the modeling of networks of
moving robots, a modified Dijkstra algorithm was used

to find shortest paths in a dynamic graph, described
with the help of an edge-events list, coding the
additions/deletions of edges. An excellent state of
the art on models and techniques for communication
in such networks can be found in [Sch02]. We refer
the interested reader to its extensive bibliography,
where issues concerning connectivity, routing, and
admission control are addressed.

Our work in this area focuses on the design of
models and algorithmic techniques that can harness
the complexity of an evolving setting as yielded by
dynamic communication networks. In this paper, we
give a simple but powerful model that captures most
characteristics of such networks. The notion of
evolving graphs, introduced here, basically consists
in formalizing a time domain in graphs. Surprisingly,
this leads to a plethora of interesting questions in
(algorithmic) graph theory, some of which we
investigate here- inafter, through the computation of
shortest paths under several settings. This paper is
organized as follows. The formal definitions of
evolving graphs and of some of their main
parameters are given in the next sec- tion. Then, in
Section 3, we exemplify their use through the
computation of shortest paths under different
hypotheses in fixed-schedule dynamic networks. We
close this paper with concluding remarks and ways
for further research.

EVOLVING GRAPHS

In this section, we formally define a model capturing
most of the characteristics of dynamic networks, in
which to study graph-theoretic properties and
algorithms.

Dr. J. K. Navis Vigilia1*, Dr. V. Margret Ponrani2

w
w

w
.i
g

n
it

e
d

.i
n

14

 Dynamic Communication Networks- Evolving Graphs

Definition 1 (Evolving Graphs) Let a digraph G(V; E)

be given, along with an ordered sequence of its

subgraphs, SG = G, G1…., GT , T € N. Then, the

system G = (G; SG) is called an evolving graph.

Let I = [0, T] . If we consider I as a time interval,

where Gi is the subgraph at time instant i, then G =

(G, SG) can be seen as a simple time-dependent

discrete dynamical system, running during I

We now define some of the main parameters of an
evolving graph. Let EG = U Ei, and VG =U Vi. It is clear
that M = | EG | ≤|E | = M and that N = |VG |≤ |V | = N.

Two vertices are said to be adjacent in G if and only if
they are adjacent in some Gi. The degree of a vertex in
G is defined as its degree in EG .

Let P be a path in Gi, under the usual definition. Let

F(P) be its source, L(P) be its destination, and |P| be its

length. We define a path in G between two vertices u

and v of VG as a sequence PG (u; v) = Pt1 ,Pt2 ,…, Ptk

, with t1 < t2 <… < tk, such that Pti is a (usually

defined) path in Gti with F(Pt1) = u, L(Ptk) = v, and

for all i < k it holds that L(Pti) = F(Pti+1). Note that

this definition implies that there are no paths in G

going to the “past”.

A circuit in G is a path in G , PG , such that L(PG) =

F(PG).

The length of a path in G, PG(u,v)= Pt1, Pt2….Ptk is |

PG(u,v)|= | a path in G between two vertices
u and v, with minimum length among all paths in G
between u and v, is called timely.

We define the distance in G between two vertices u and

v as dG (u, v) = min |PG (u, v)|, taken over all paths in

G between u and v. We also define a notion of

“distance” in the time domain, as follows.

Let a path in G between two vertices u and v, PG (u, v)

= Pt1 , Pt2 ,…; Ptk , be such that tk is minimum. Then,

we define stride(u, v) = tk. Roughly speaking, stride(u,

v) gives the minimum number of time steps required to

go from u to v in G .

We define the diameter of G as D(G) = max dG (u, v),
taken over all pairs of vertices in VG . Analogously to
the case above, a notion of diameter in the time
domain can also be introduced [FV02].

As usual, a tree in G is defined as a connected induced
subgraph of VG with no circuits in G . However, one
such a tree would not be very helpful when studying
connectivity issues, since it does not take into account
the total order of the subgraphs in G , and the
restrictions it imposes on paths in G . Therefore, we
define a valid tree in G as a tree in G where each and

all directed paths in the tree are paths in G . Likewise,
a valid rooted tree in G is a rooted directed tree where
all paths from the root to the leaves are paths in G .

It is interesting to note that the above definitions can be
restated including time constraints, like ―after time
instant t‖, ―during time interval I1‖, etc.

Notice that in the evolving graphs model above, it is
made clear that between two subsequent time steps,

any changes may happen, with the possible creation

and/or deletion of any number of vertices and arcs.

Fixed-schedule dynamic networks

A dynamic network can be seen as a potentially
infinite - , sequence R =…, Rt-1,Rt ,Rt+1,…. of
networks over time. Some of these networks have
predictable changes in their topologies ([FV02]), like
LEO satellite networks ([FGP02]), or even explicitly
fixed schedules of their topologies, like transport
networks ([Cou02]). Such fixed-schedule dynamic
networks (FSDN) could be seen as a dynamic
network which has a presence matrix PE|(u; v), i |,
indicating whether (u, v) is present at time step ti, for
each link (u, v) of R , and another presence matrix
PV |u, i|, indicating whether u is present at time step
ti, for each node u of R . The network at time ti is
then represented by the subnetwork Rti of R , which
is obtained by taking the nodes and links of R for
which their corresponding P[i]‘s indicate they are to
be present.

In order to model a fixed-schedule dynamic network
by an evolving graph, it suffices to be given a time
window W of size T , and to work with G = (U Ri|i €
W, FSDN|W).

COMPUTING SHORTEST PATHS IN
EVOLVING GRAPHS

To exemplify the use of evolving graphs, we show in
this section how to compute the shortest paths from
a source node A to all other nodes. Further
interesting questions are proposed in the next
section.

We assume the input evolving graph is given as
linked adjacency lists, with the sorted arc schedule
attached to each neighbor, given as time intervals
indicating the time steps where that arc is alive. The
head of each list is a vertex with its own sorted node
schedule list attached, also given as time intervals.
The space used is proportional to the size of the
adjacency linked lists, plus the size of the arcs and
nodes schedule lists. Therefore, the total size of the
lists is O(M + (M + N)T) = O(M T) in the worst
case. Note that other ways exist to code a dynamic
network ([Vie01, FV02]).

First, remind that the usual Dijkstra‘s algorithm
[CLR90] proceeds by building a set S of closed
vertices, for which the shortest paths have already

Dr. J. K. Navis Vigilia1*, Dr. V. Margret Ponrani2

w
w

w
.i
g

n
it

e
d

.i
n

15

 Journal of Advances in Science and Technology
Vol. 19, Issue No. 3, September-2022, ISSN 2230-9659

been computed, then choosing a vertex u not in S
whose shortest path estimate, d(u), is minimum, and
adding u to S, i.e., closing u. At this point, all arcs from
u to V-S are opened, i.e., they are examined and the
respective shortest path estimate, d, is updated for all
end-points. In order to have quick access to the best
shortest path estimate, the algorithm keeps a min-heap
priority queue Q with all vertices in V-S, with key d.
Note that d is initialized to ∞ for all vertices but for A,
which has d = 0.

The main problem to implement such an algorithm in
an evolving setting is how to keep the correct values of
the shortest path estimate at the time we will need
them. Indeed, we need to know the vertex with least
estimated distance to the set S only at the appropriate
time step. Furthermore, since we are dealing with
communication networks, several hypotheses may be
made with respect to the actual communication of
information. A basic one, valid throughout this text is
that we shall consider packet networks. Hence,
transmitting one piece of information means
transmitting one packet over one arc. Other
hypotheses will be specified case by case.

Scenario 1 Packet transmission time is normalized so
as to coincide with the duration of a time step Δt) = ti+1 -
ti, which is constant for all i. There is information
conservation, i.e., if a vertex disappears and then
reappears, it still has the received informations.

This is the easiest case, because all the weights on the
arcs can be seen as being unitary. Notwithstanding, in
opposition to Dijkstra‘s algorithm, we may have to open
arcs from arbitrary closed nodes in case they appear in
an upcoming Gi. The evolution of (discrete) time will be
represented by a counter i. Below, we give an efficient
algorithm to compute the single-source shortest paths
in evolving graphs under Scenario 1.

Algorithm 1

1. Make all d(v) = ∞ but for d(A) = 0. Initialize a min-
heap Q with a record (A; key(A) = 1) in the root. Put in Q
a dummy record (dummy; key(dummy) = ∞).

2. i ← 1.

3. While key(root(Q)) ≠ ∞ do

(a) While key(root(Q)) = i do

i. Extract x, the vertex at root(Q).

ii. Delete root(Q).

iii. Traverse the adjacency list of x, and
for each open neighbor v do: compute fa(v) (the
first valid arc schedule time greater or equal to
current time step i), and insert v in Q if it was
not there already.

iv. If fa(v) < d(v) then update d(v) with

fa(v), and key(v) with fa(v) + 1.

v. Close x and insert it in the shortest
paths tree.

vi. Update Q.

(b) i ← i + 1.

Comments. The variable fa(v) indicates the earliest
that node x can transmit the message to its
neighbor

If this is early enough, then the distance from the source
A to v becomes fa(v). The key to the heap key(v)
indicates the first moment v can retransmit the received
message (in this case, where transmission time is
normalized, it would be the time step right after
fa(v)). Since i is counting the time steps, once a
node is closed, no new path in the future can
decrease its distance to A.

The shortest path is found by traversing the shortest
paths tree back from a destination to A. In case two
successive labels differ by more than 1, this implies
that the shortest path yields a forced stay of the
information in that vertex for a number of steps, until
the connection is established to its successor in the
tree.

Analysis. We can see that, starting from A, the
algorithm examines all its out-neighbors (┌+(A)),
and for each one there is one table look-up to find
the valid schedule times, plus a heap update.
Therefore, for each closed vertex, the algorithm
performs O(log T + log N) operations. Hence, the
total number of operations is at most O(∑v V
[┌+(v)(log T + log N)]) = O(M (log T + log N)).

As we said, the hypothesis above represents the
easiest setting. We will now try and relax it point by
point.

Scenario 2 One time step (t) allows for the traversal
of k arcs in the graphs.

Actually, relaxing the traversal time constraint in this
sense does not cause a big problem. It is like each
column of the arc presence matrix had been copied
k times. A simple counting strategy could be used to
implement it.

Analysis. The same as above, but for the
parameter k.

Scenario 3 Crossing an arc takes arbitrary time,

given as a positive cost c(u;v) associated to them,

butthe subgraphs Gi are only allowed to grow (i.e.,

no arc disappears).

Under the assumption that no arc disappears
[Sti01], then the algorithm above correctly computes

Dr. J. K. Navis Vigilia1*, Dr. V. Margret Ponrani2

w
w

w
.i
g

n
it

e
d

.i
n

16

 Dynamic Communication Networks- Evolving Graphs

all shortest paths, since a vertex x is closed at time
step tk if and only if d(x)≤ tk, ensuring that no shorter
path can be found for it. The only modification would be

when updating the values of all d(v), v ┌+(x), in order
to take c(x,v) into account.

Analysis. Same as for Scenario 1.

Now, we look at the interesting case where an arc may
disappear before the information had enough time to
cross it.

Scenario 4 Crossing an arc takes arbitrary time, given

as a positive cost c(u,v) associated to them. Arcs may

disappear.

One solution for this problem is to first pre-compute the
time intervals (a, b) for each arc (u, v), and only keep
those pairs for which b - a ≥ c(u,v). Then, run Algorithm
1 with this new arcs schedule list, checking only
whether the transmission fits in the first arc time
interval found, using the next one otherwise. A final
modification would be when updating the values of all
fa(v), v Є ┌+(x), in order to take c(x,v) into account.

Analysis. Same as for Scenario 1.

Scenario 5 There is no longer information conservation,
i.e., if a vertex disappears and then reappears, it may
have lost the received message

In this case, a node may have to be reached several
times before we find out that it was part of a shortest
path to another node. Recall that Algorithm 1 first
extracts the current root of the heap Q – say vertex x –,
then traverses its adjacency list, and finally closes it. In
order to cope with the loss of information, we need to
change the computation of fa(v) during the adjacency
list traversal. For that, let PV (v) =[tl1, tr1], [tl2, tr2],…
be the sorted schedule list of node v, with the intervals
representing the time intervals in which node v is alive.
Let also Left (PV (v)) (respectively, Right(PV (v)))
denote the ordered list of all left (respectively, right)
limits of such intervals. We will further need a variable,
called flag, indicating the time interval in which a node
has been closed, in order to avoid it receiving the same
information again, while still alive.

We give below the algorithm for this scenario. For the
sake of simplicity, we assume again that packet
transmission time is normalized so as to coincide with
the duration of a time step.

Algorithm 2

1. Make all d(v) = ∞ but for d(A) = 0. Initialize a
min-heap Q with a record (A; key(A) = 1) in the root. Put
in Q a dummy record (dummy; key(dummy) = ∞).

2. i ←1.

3. While key(root(Q)) ≠ ∞ do

(a) While key(root(Q)) = i do

i. Extract x, the vertex at root(Q).

ii. Delete root(Q).

iii. If x is not alive at time step i then skip
and go to step (3(a)viii).

iv. Let [a, b] Є PV (x) denote the current
time interval where x is alive. Traverse the adja-
cency list of x, and perform the following. For each
neighbor v do: if (v is closed and

flag(v) [a,b]≠0 then skip. Otherwise do: Locate i

into Left(s(v)), getting tjl and tlj+1 such that tjl ≤ I <

tlj+1. If i< rjj, if fa(v) ← i. Otherwise if tlj+1≤ b, then

fa (v) ← tlj+1

Insert v in Q if it was not there already.
v. Update all open neighbors‘ d(v) with fa(v), if

needed, and all neighbors‘ key(v) with fa(v) +
1.

vi. Close x with flag(x) = [a, b], and insert it in
the shortest paths digraph.

vii. Update Q.

(b) i ← i + 1.

Comments. As before, the variable fa(v) indicates
the earliest that node x can transmit the message to
its neighbor v. If this is early enough, then the
distance from the source A to v becomes fa(v). The
key to the heap key(v) indicates the first moment v
can retransmit the received message. However, the
node may not be alive at that moment implying that
only the heap update should be performed when it
comes to the root of the heap (test at step 3(a)iii).
Moreover, now a closed vertex (i.e., a vertex whose
distance to A has already been computed) may
become part of a shortest path to another node,
because it disappeared from the network and lost
the message before being informed again. Thus, we
have to keep considering closed nodes, but ensure
that it does not receive the message again before it
disappears (whence the test on the flags of closed
neighbors at step 3(a)iv).

Notice that this algorithm will not produce a shortest
path tree, since a node may have to be reached
several times in order to ensure information delivery.
Therefore, we should build a digraph with labels in
the arcs, indicating the time step such an arc was
used for transmission. This should be done at step
3(a)vii, when closing the root of Q and inserting it in
the shortest paths digraph. In order to compute the
shortest paths, we take the inverse path in this
digraph from any destination back to A. In each
vertex we take the inverse arc with the highest label

Dr. J. K. Navis Vigilia1*, Dr. V. Margret Ponrani2

w
w

w
.i
g

n
it

e
d

.i
n

17

 Journal of Advances in Science and Technology
Vol. 19, Issue No. 3, September-2022, ISSN 2230-9659

which is smaller than the label of the arc just used, and
mark the arc as done.

Analysis. It is easy to see that the cost of the whole
procedure now depends on the number of steps each
vertex reappears in the network. This number may be
as large as O(T), the schedule length. Therefore,
Algorithm 2 performs at most O(T M (log T + log N))
operations. Notice, however, that this number is
bounded by the actual size of the schedule lists, which
measures the number of changes in the network
topology during the time window W.

CONCLUSION AND PERSPECTIVES

In this paper we introduced the notion of evolving
graphs, defined as an ordered sequence of subgraphs
of a given graph, where paths are not allowed to counter
the given order. We then defined some of its parameters
and presented shortest paths algorithms that can be
applied in fixed-schedule dynamic networks. Scenarios
1 through 5 have been implemented in C++, and a
dynamic interface was implemented in GTK [Fas02].

We have two main concluding remarks. First, just like
in standard graph algorithms, the assumption on the a
priori knowledge about the subgraphs topology can be
dropped, giving raise to on-line evolving graph
algorithms. Likewise, the assumption on the a priori
centralized knowledge can also be dropped, in order to
instigate the design of distributed evolving graph
algorithms.

Second, it seemed clearer to us to present evolving
graphs as a discrete system. We note, however, that the
sequence of subgraphs could actually be a continuous
system that is discretized according to the application in
hand, like by the traversal time of an arc, for instance.
In [FV02], an algorithm is given for continuous time.

Turning our attention to perspectives, several open
problems in the area of dynamic communication
networks are given in [Sch02]. With respect to evolving
graphs, we think that many interesting ways for further
research are worth pursuing. Even in the simple setting
used in this paper, how would more intricate algorithms
behave, like multi-packet transmissions or flow
algorithms? What happens when the presence
matrices represent a probabilistic process? What would
be the implications on hard problems of restricted
hypotheses over the graph G or over its subgraphs Gi?
Not mentioning all the questions arising in the case
where a distributed or on-line setting, even partial, is
assumed.

ACKNOWLEDGMENTS

The author is grateful to D. Coudert, G. Fasoli, F.
Havet, K. Marcus, M. Morvan, S. Perennes, H. Rivano,
and L. Viennot, for fruitful discussions, and to the
anonymous referees for their insightful comments,
which helped improve the presentation of this paper.

REFERENCES

[ARC] ARC INRIA. Algorithmique et analyse des graphes dynamiques, www.hipercom.inria.fr/soleil.

[CLR90] T. Cormen, C. Leiserson, and R. Rivest.

Introduction to Algorithms. The MIT Press, 1990.

[COL] COLOR INRIA Sophia-Antipolis. Proble`mes de
dynamicite´ dans les re´seaux.

[Cou02] D. Coudert. Private communication, February
2002.

[DFMSN01] C. Demetrescu, D. Frigioni, A. Marchetti-
Spaccamela, and U. Nanni. Maintaining shortest paths
in digraphs with arbitrary arc weights: An experimental
study. In Proceedings of the 4th Workshop on
Algorithm Engineering (WAE) 2000, volume 1982 of
LNCS, pages 218–229, Saarbru¨cken, Germany,
September 2001.

[Eur] European FET project. Critical Resource
Sharing for Cooperation in Complex Systems.

[Fas02] G. Fasoli. Graphes e´volutifs et
re´seaux radio-mobiles : simulation et
visualisation d‘algorithmes de plus court chemins.
Rapport de stage, EPF & INRIA Sophia Antipolis,
avril 2002.

[FGP02] A. Ferreira, J. Galtier, and P. Penna.
Topological design, routing and handover in satellite
networks. In I. Stojmenovic, editor, Handbook of
Wireless Networks and Mobile Computing, pages
473–493. John Wiley and Sons, 2002.

[FV02] A. Ferreira and L. Viennot. A note on models,
algorithms, and data structures for dynamic
communication networks. Technical Report 4403,
INRIA, 2002.

[GAGPK01] T. Goff, N. Abu-Ghazaleh, D. Phatak,
and R. Kahvecioglu. Preemptive routing in ad hoc
networks. In Proceedings of the seventh
International Conference on Mobile Computing and
Networking (MobiCom‘01), pages 43–52, Rome,
Italy, July 2001. ACM.

[KRR+00] R. Kumar, P. Raghavan, S. Rajagopalan,
D. Sivakumar, A. Tomkins, and E. Upfal. Stochas-
tic models for the web graph. In Proceedings of the
IEEE Symposium on Foundations of Computer
Science,, 2000.

[LLS01] X. Lin, M. Lakshdisi, and I. Stojmenovic.
Location based localize alternate, disjoint, multi-
path and component routing schemes for wireless
networks. In Proceedings of the 2001 ACM
International Symposium on Mobile ad hoc
Networking and Computing (MobiHoc‘01), pages
287–290, October 2001.

http://www.hipercom.inria.fr/soleil

Dr. J. K. Navis Vigilia1*, Dr. V. Margret Ponrani2

w
w

w
.i
g

n
it

e
d

.i
n

18

 Dynamic Communication Networks- Evolving Graphs

[Sch02] C. Scheideler. Models and techniques for
communication in dynamic networks. In H. Alt and A.
Ferreira, editors, Proceedings of the 19th STACS,
volume 2285 of LNCS, pages 27–49, Juan-les-Pins,
France, March 2002. Springer-Verlag.

[Sti01] V. Stix. Finding all maximal cliques in evolving
graphs. Technical Report TR2001-05, De- partment of
Statistics and Decision Support Systems, University of
Vienna, February 2001.

[Vie01] L. Viennot. Routage entre robots dont les
de´placements sont connus – Un exemple de graphe
dynamique. Re´union TAROT, ENST, Paris, Novembre
2001.

Corresponding Author

Dr. J. K. Navis Vigilia*

Assistant Professor, Department Of Mathematics,
Jyoti Nivas College Autonomous, Bengaluru

