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Abstract - New technologies and the deployment of mobile and nomadic services are driving the 
emergence of complex com- munications networks, that have a highly dynamic behavior. Modeling such 
dynamics, and designing algorithms that take it into account, received considerable attention recently. In 
this paper, we introduce the evolving graphs, a simple model which aims at harnessing the complexity of 
an evolving setting as yielded by dynamic communication networks. We exemplify its use through the 
computation of shortest paths under different hypotheses in fixed-schedule dynamic networks. 
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INTRODUCTION 

The advent of new technological communication 
networks, such as the Internet and ad-hoc radio 
networks, highly motivates the study of several facets 
of the dynamic behavior of such networks. The 
underlying mobility of users and/or relays is just one of 
the factors that contribute to their dynamics. Others 
include varying link congestion, node and link faults, 
and components addition and deletion. 

The related domain of dynamic graphs has been 
extensively studied in the past decade (see 
[DFMSN01] and references therein). In this case, some 
property (e.g. a minimum spanning tree) of an input 
graph is computed, and algorithms are given in order to 
maintain such a property after the graph is modified 
(typically an addition/deletion of a vertex/edge). One 
could say that the discrete step is one modification 
undergone by the graph. 

The field of communications in dynamic networks, i.e., 
networks with evolving characteristics, also re- ceives 
considerable attention [GAGPK01, KRR+00, LLS01], 
and even several research projects are already tackling 
this important issue [ARC, COL, Eur]. Most papers in 
this area define a network as a graph, and let p be a 
fault probability for each edge. At each time step, each 
edge is kept independently at random with probability 
p. Problems studied under such a random-fault model 
are, for instance, fault-tolerant routing and the 
computation of large fault-free connected components 
[Sch02]. A good example of stochastic mod- els for 
dynamic networks appears in papers presenting 
research on the graph of the Web, like in [KRR+00]. In 
[Vie01], motivated by the modeling of networks of 
moving robots, a modified Dijkstra algorithm was used 

to find shortest paths in a dynamic graph, described 
with the help of an edge-events list, coding the 
additions/deletions of edges. An excellent state of 
the art on models and techniques for communication 
in such networks can be found in [Sch02]. We refer 
the interested reader to its extensive bibliography, 
where issues concerning connectivity, routing, and 
admission control are addressed. 

Our work in this area focuses on the design of 
models and algorithmic techniques that can harness 
the complexity of an evolving setting as yielded by 
dynamic communication networks. In this paper, we 
give a simple but powerful model that captures most 
characteristics of such networks. The notion of 
evolving graphs, introduced here, basically consists 
in formalizing a time domain in graphs. Surprisingly, 
this leads to a plethora of interesting questions in 
(algorithmic) graph theory, some of which we 
investigate here- inafter, through the computation of 
shortest paths under several settings. This paper is 
organized as follows. The formal definitions of 
evolving graphs and of some of their main 
parameters are given in the next sec- tion. Then, in 
Section 3, we exemplify their use through the 
computation of shortest paths under different 
hypotheses in fixed-schedule dynamic networks. We 
close this paper with concluding remarks and ways 
for further research. 

EVOLVING GRAPHS 

In this section, we formally define a model capturing 
most of the characteristics of dynamic networks, in 
which to study graph-theoretic properties and 
algorithms. 
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Definition 1 (Evolving Graphs) Let a digraph G(V; E) 

be given, along with an ordered sequence of its 

subgraphs, SG = G,  G1…., GT , T € N. Then, the 

system G = (G; SG) is called an evolving graph. 

Let I  = [0, T] .   If we consider I  as  a time  interval,  

where Gi  is  the subgraph at  time instant i,  then G = 

(G, SG) can be seen as a simple time-dependent 

discrete dynamical system, running during I  

We now define some of the main parameters of an 
evolving graph. Let EG = U Ei, and VG =U Vi. It is clear 
that M = | EG | ≤|E | = M and that N = |VG |≤  |V | = N. 

Two vertices are said to be adjacent in G if and only if 
they are adjacent in some Gi. The degree of a vertex in 
G is defined as its degree in EG . 

Let P be a path in Gi, under the usual definition. Let 

F(P) be its source, L(P) be its destination, and |P| be its 

length. We define a path in G between two vertices u 

and v of VG as a sequence PG (u; v) = Pt1 ,Pt2 ,…, Ptk 

, with t1 < t2 <… < tk, such that Pti is a (usually 

defined) path in Gti with F(Pt1 ) = u, L(Ptk ) = v, and 

for all i < k it holds that L(Pti ) = F(Pti+1 ).  Note that 

this definition implies that there are no paths in G  

going to the “past”. 

A circuit in G is a path in G , PG , such that L(PG ) = 

F(PG ). 

The length of a path in G, PG(u,v)= Pt1, Pt2….Ptk is | 

PG(u,v)|= | a path in G between two vertices 
u and v, with minimum length among all paths in G 
between u and v, is called timely. 

We define the distance in G between two vertices u and 

v as dG (u, v) = min |PG (u, v)|, taken over all paths in 

G between u and v. We also define a notion of 

“distance” in the time domain, as follows. 

Let a path in G between two vertices u and v, PG (u, v) 

= Pt1 , Pt2 ,…; Ptk , be such that tk is minimum. Then, 

we define stride(u, v) = tk. Roughly speaking, stride(u, 

v) gives the minimum number of time steps required to 

go from u to v in G . 

We define the diameter of G as D(G ) = max dG (u, v), 
taken over all pairs of vertices in VG . Analogously to 
the case above, a notion of diameter in the time 
domain can also be introduced [FV02]. 

As usual, a tree in G is defined as a connected induced 
subgraph of VG with no circuits in G . However, one 
such a tree would not be very helpful when studying 
connectivity issues, since it does not take into account 
the total order of the subgraphs in G , and the 
restrictions it imposes on paths in G . Therefore, we 
define a valid tree in G as a tree in G where each and 

all directed paths in the tree are paths in G . Likewise, 
a valid rooted tree in G is a rooted directed tree where 
all paths from the root to the leaves are paths in G . 

It is interesting to note that the above definitions can be 
restated including time constraints, like ―after time 
instant t‖, ―during time interval I1‖, etc. 

Notice that in the evolving graphs model above, it is 
made clear that between two subsequent time steps, 

any changes may happen, with the possible creation 

and/or deletion of any number of vertices and arcs. 

Fixed-schedule dynamic networks 

A dynamic network can be seen as a      potentially 
infinite - , sequence R =…, Rt-1,Rt ,Rt+1,…. of 
networks over time. Some of these networks have 
predictable changes in their topologies ([FV02]), like 
LEO satellite networks ([FGP02]), or even explicitly 
fixed schedules of their topologies, like transport 
networks ([Cou02]). Such fixed-schedule dynamic 
networks (FSDN) could be seen as a dynamic 
network which has a presence matrix PE|(u; v), i |, 
indicating whether (u, v) is present at time step ti, for 
each link (u, v) of R , and another presence matrix 
PV |u, i|, indicating whether u is present at time step 
ti, for each node u of R . The network at time ti is 
then represented by the subnetwork Rti of R , which 
is obtained by taking the nodes and links of R  for 
which their corresponding P[i]‘s indicate they are to 
be present. 

In order to model a fixed-schedule dynamic network 
by an evolving graph, it suffices to be given a time  
window W of size T , and to work with G = (U Ri|i € 
W,  FSDN|W ). 

COMPUTING SHORTEST PATHS IN 
EVOLVING GRAPHS 

To exemplify the use of evolving graphs, we show in 
this section how to compute the shortest paths from 
a source node A to all other nodes. Further 
interesting questions are proposed in the next 
section. 

We assume the input evolving graph is given as 
linked adjacency lists, with the sorted arc schedule 
attached to each neighbor, given as time intervals 
indicating the time steps where that arc is alive. The 
head of each list is a vertex with its own sorted node 
schedule list attached, also given as time intervals. 
The space used is proportional to the size of the 
adjacency linked lists, plus the size of the arcs and 
nodes schedule lists. Therefore, the total size of the 
lists is O(M + (M + N )T ) = O(M T ) in the worst 
case. Note that other ways exist to code a dynamic 
network ([Vie01, FV02]). 

First, remind that the usual Dijkstra‘s algorithm 
[CLR90] proceeds by building a set S of closed 
vertices, for which the shortest paths have already 
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been computed, then choosing a vertex u not in S 
whose shortest path estimate, d(u), is minimum, and 
adding u to S, i.e., closing u. At this point, all arcs from 
u to V-S are opened, i.e., they are examined and the 
respective shortest path estimate, d, is updated for all 
end-points. In order to have quick access to the best 
shortest path estimate, the algorithm keeps a min-heap 
priority queue Q with all vertices in V-S, with key d. 
Note that d is initialized to ∞ for all vertices but for A, 
which has d = 0. 

The main problem to implement such an algorithm in 
an evolving setting is how to keep the correct values of 
the shortest path estimate at the time we will need 
them. Indeed, we need to know the vertex with least 
estimated distance to the set S only at the appropriate 
time step. Furthermore, since we are dealing with 
communication networks, several hypotheses may be 
made with respect to the actual communication of 
information. A basic one, valid throughout this text is 
that we shall consider packet networks. Hence, 
transmitting one piece of information means 
transmitting one packet over one arc. Other 
hypotheses will be specified case by case. 

Scenario 1 Packet transmission time is normalized so 
as to coincide with the duration of a time step Δt) = ti+1 - 
ti, which is constant for all i. There is information 
conservation, i.e., if a vertex disappears and then 
reappears, it still has the received informations. 

This is the easiest case, because all the weights on the 
arcs can be seen as being unitary. Notwithstanding, in 
opposition to Dijkstra‘s algorithm, we may have to open 
arcs from arbitrary closed nodes in case they appear in 
an upcoming Gi. The evolution of (discrete) time will be 
represented by a counter i. Below, we give an efficient 
algorithm to compute the single-source shortest paths 
in evolving graphs under Scenario 1. 

Algorithm 1 

1. Make all d(v) = ∞ but for d(A) = 0. Initialize a min-
heap Q with a record (A; key(A) = 1) in the root. Put in Q 
a dummy record (dummy; key(dummy) = ∞). 

2. i ← 1. 

3. While key(root(Q)) ≠ ∞ do 

(a) While key(root(Q)) = i do 

i. Extract x, the vertex at root(Q). 

ii. Delete root(Q). 

iii. Traverse the adjacency list of x, and 
for each open neighbor v do: compute fa(v) (the 
first valid arc schedule time greater or equal to 
current time step i), and insert v in Q if it was 
not there already. 

iv. If fa(v) < d(v) then update d(v) with 

fa(v), and key(v) with fa(v) + 1. 

v. Close x and insert it in the shortest 
paths tree. 

vi. Update Q. 

(b) i  ← i + 1. 

Comments. The variable fa(v) indicates the earliest 
that node x can transmit the message to its 
neighbor 

If this is early enough, then the distance from the source 
A to v becomes fa(v). The key to the heap key(v) 
indicates the first moment v can retransmit the received 
message (in this case, where transmission time is 
normalized, it would be the time step right after 
fa(v)). Since i is counting the time steps, once a 
node is closed, no new path in the future can 
decrease its distance to A. 

The shortest path is found by traversing the shortest 
paths tree back from a destination to A. In case two 
successive labels differ by more than 1, this implies 
that the shortest path yields a forced stay of the 
information in that vertex for a number of steps, until 
the connection is established to its successor in the 
tree. 

Analysis. We can see that, starting from A, the 
algorithm examines all its out-neighbors (┌+(A)), 
and for each one there is one table look-up to find 
the valid schedule times, plus a heap update. 
Therefore, for each closed vertex, the algorithm 
performs O(log T + log N ) operations. Hence, the 
total number of operations is at most O(∑v V 
[┌+(v)(log T + log N )]) = O(M (log T + log N )). 

As we said, the hypothesis above represents the 
easiest setting. We will now try and relax it point by 
point. 

Scenario 2 One time step (t) allows for the traversal 
of k arcs in the graphs. 

Actually, relaxing the traversal time constraint in this 
sense does not cause a big problem. It is like each 
column of the arc presence matrix had been copied 
k times. A simple counting strategy could be used to 
implement it. 

Analysis. The same as above, but for the 
parameter k. 

Scenario 3  Crossing an arc takes arbitrary time, 

given as a positive cost c(u;v)  associated to them, 

butthe subgraphs Gi are only allowed to grow (i.e., 

no arc disappears). 

Under the assumption that no arc disappears 
[Sti01], then the algorithm above correctly computes 
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all shortest paths, since a vertex x is closed at time 
step tk if and only if d(x)≤ tk, ensuring that no shorter 
path can be found for it. The only modification would be 

when updating the values of all d(v), v  ┌+(x), in order 
to take c(x,v)  into account. 

Analysis. Same as for Scenario 1. 

Now, we look at the interesting case where an arc may 
disappear before the information had enough time  to 
cross it. 

Scenario 4  Crossing an arc takes arbitrary time, given 

as a positive cost c(u,v)  associated to them.  Arcs may 

disappear. 

One solution for this problem is to first pre-compute the 
time intervals (a, b) for each arc (u, v), and only keep 
those pairs for which b - a ≥ c(u,v). Then, run Algorithm 
1 with this new arcs schedule list, checking only 
whether the transmission fits in the first arc time 
interval found, using the next one otherwise. A final 
modification would be when updating the values of all 
fa(v), v Є ┌+(x), in order to take c(x,v)  into account. 

Analysis. Same as for Scenario 1. 

Scenario 5 There is no longer information conservation, 
i.e., if a vertex disappears and then reappears, it may 
have lost the received message 

In this case, a node may have to be reached several 
times before we find out that it was part of a shortest 
path to another node. Recall that Algorithm 1 first 
extracts the current root of the heap Q – say vertex x –, 
then traverses its adjacency list, and finally closes it. In 
order to cope with the loss of information, we need to 
change the computation of fa(v) during the adjacency 
list traversal. For that, let PV (v) =[tl1, tr1 ], [tl2, tr2 ],… 
be the sorted schedule list of node v, with the intervals 
representing the time intervals in which node v is alive. 
Let also Left (PV (v)) (respectively, Right(PV (v))) 
denote the ordered list of all left (respectively, right) 
limits of such intervals. We will further need a variable, 
called flag, indicating the time interval in which a node 
has been closed, in order to avoid it receiving the same 
information again, while still alive. 

We give below the algorithm for this scenario. For the 
sake of simplicity, we assume again that packet 
transmission time is normalized so as to coincide with 
the duration of a time step. 

Algorithm 2 

1. Make all d(v) = ∞ but for d(A) = 0. Initialize a 
min-heap Q with a record (A; key(A) = 1) in the root. Put 
in Q a dummy record (dummy; key(dummy) = ∞). 

2. i  ←1. 

3. While key(root(Q)) ≠ ∞ do 

(a) While key(root(Q)) = i do 

i. Extract x, the vertex at root(Q). 

ii. Delete root(Q). 

iii. If x is not alive at time step i then skip 
and go to step (3(a)viii). 

iv. Let  [a, b] Є PV (x) denote the current 
time  interval where x  is alive.   Traverse  the adja- 
cency list of x, and perform the following. For each 
neighbor v do: if (v is closed and 

flag(v)     [a,b]≠0 then skip.  Otherwise do:  Locate i 

into Left(s(v)), getting tjl and tlj+1 such that tjl ≤ I < 

tlj+1. If i< rjj, if fa(v) ← i. Otherwise if tlj+1≤ b, then 

fa (v) ← tlj+1 

Insert v in Q if it was not there already. 
v. Update all open neighbors‘ d(v) with fa(v), if 

needed, and all neighbors‘ key(v) with fa(v) + 
1. 

vi. Close x with flag(x) = [a, b], and insert it in 
the shortest paths digraph. 

vii. Update Q. 

(b) i ← i + 1. 

Comments. As before, the variable fa(v) indicates 
the earliest that node x can transmit the message to 
its neighbor v. If this is early enough, then the 
distance from the source A to v becomes fa(v). The 
key to the heap key(v) indicates the first moment v 
can retransmit the received message. However, the 
node may not be alive at that moment implying that 
only the heap update should be performed when it 
comes to the root of the heap (test at step 3(a)iii). 
Moreover, now a closed vertex (i.e., a vertex whose 
distance to A has already been computed) may 
become part of a shortest path to another node, 
because it disappeared from the network and lost 
the message before being informed again. Thus, we 
have to keep considering closed nodes, but ensure 
that it does not receive the message again before it 
disappears (whence the test on the flags of closed 
neighbors at step 3(a)iv). 

Notice that this algorithm will not produce a shortest 
path tree, since a node may have to be reached 
several times in order to ensure information delivery. 
Therefore, we should build a digraph with labels in 
the arcs, indicating the time step such an arc was 
used for transmission. This should be done at step 
3(a)vii, when closing the root of Q and inserting it in 
the shortest paths digraph. In order to compute the 
shortest paths, we take the inverse path in this 
digraph from any destination back to A. In each 
vertex we take the inverse arc with the highest label 
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which is smaller than the label of the arc just used, and 
mark the arc as done. 

Analysis. It is easy to see that the cost of the whole 
procedure now depends on the number of steps each 
vertex reappears in the network. This number may be 
as large as O(T ), the schedule length. Therefore, 
Algorithm 2 performs at most O(T M (log T + log N )) 
operations. Notice, however, that this number is 
bounded by the actual size of the schedule lists, which 
measures the number of changes in the network 
topology during the time window W. 

CONCLUSION AND PERSPECTIVES 

In this paper we introduced the notion of evolving 
graphs, defined as an ordered sequence of subgraphs 
of a given graph, where paths are not allowed to counter 
the given order. We then defined some of its parameters 
and presented shortest paths algorithms that can be 
applied in fixed-schedule dynamic networks. Scenarios 
1 through 5 have been implemented in C++, and a 
dynamic interface was implemented in GTK [Fas02]. 

We have two main concluding remarks. First, just like 
in standard graph algorithms, the assumption on the a 
priori knowledge about the subgraphs topology can be 
dropped, giving raise to on-line evolving graph 
algorithms. Likewise, the assumption on the a priori 
centralized knowledge can also be dropped, in order to 
instigate the design of distributed evolving graph 
algorithms. 

Second, it seemed clearer to us to present evolving 
graphs as a discrete system. We note, however, that the 
sequence of subgraphs could actually be a continuous 
system that is discretized according to the application in 
hand, like by the traversal time of an arc, for instance. 
In [FV02], an algorithm is given for continuous time. 

Turning our attention to perspectives, several open 
problems in the area of dynamic communication 
networks are given in [Sch02]. With respect to evolving 
graphs, we think that many interesting ways for further 
research are worth pursuing. Even in the simple setting 
used in this paper, how would more intricate algorithms 
behave, like multi-packet transmissions or flow 
algorithms? What happens when the presence 
matrices represent a probabilistic process? What would 
be the implications on hard problems of restricted 
hypotheses over the graph G or over its subgraphs Gi? 
Not mentioning all the questions arising in the case 
where a distributed or on-line setting, even partial, is 
assumed. 
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