Phytosociological Investigation and Medicinally Important Plants of Sanjay -Dubri Tiger Reserve Sidhi, Madhya Pradesh, India

Diwakar Singh^{1*}, A.P. Singh², Vivek Kumar Yadav³

¹ Govt. SGS College, Sidhi (M.P.)

Email id- diwakarsinghtyonther@gmail.com

² Govt. Model Sc. College, Rewa (M.P.)

³ Kamla Memorial College, Sidhi (M.P.)

Abstract - This paper offers a thorough Phytosociological analysis of the Sanjay-Dubri Tiger Reserve in Madhya Pradesh, India, with an emphasis on the wide variety of plant species that make up this special ecosystem. The researcher has characterized and cataloged a large number of species of plants, including some of great medicinal significance, by means of surveys in the field and data analysis. Traditional healthcare practices in the area have long depended on these medicinally significant plants. The current study, 142 species of higher plants from 119 genera and 48 families has been identified. Upon taxonomic classification of the families, genera, and species, it was seen that the flora was dominated by dicots, with 126 species, while the monocots were represented by 16 species. The results also indicated that the large number of plants was belonged to the family Fabaceae and then Poaceae. The floras identified in this study add to the ecosystem's total area of 139.4 square meters. The research also enlisted the plants on the basis of their economic as well as medicinal importance. Among tree and herbs Diospyros melanoxylon and Shorea robusta had high frequency, respectively. This study highlights the necessity of conservation and sustainable management for the preservation of biodiversity and cultural heritage while offering insightful information on the various plant species found in the Sanjay-Dubri Tiger Reserve and their therapeutic value.

Keywords - Conservation; Ecology; Economic Importance; Flora; Geography; Medicinal Plants.

Χ.....Χ

INTRODUCTION

Plant diversity is an important aspect of biodiversity, and in order to support effective planning and sustainable utilization of forest resources, a thorough examination of its component parts, structural traits, and operational mechanisms is required (Noss, 1990). The Food and Agricultural Organization (FAO) considers forests to be important repositories of terrestrial biological diversity. Numerous forest types, including tropical, temperate, and boreal forests, offer a variety of habitats for microbes, plants, and animals (FAO, 2020).For all of recorded time, woods have provided humans' basic for requirements. Developmental efforts and population growth put more strain on forests, which resulted in deforestation and other degradation of forest area. Thus, it becomes crucial to investigate plant diversity in order to comprehend how ecosystems function (Turnbull et al., 2016).

India is separated under 12 bio-geographical provinces, 5 ecological zones, and 3 bioregion domains. It also has a vast range of ecosystems and habitats, such as those found in grasslands, lakes, wetlands, waterways, estuaries, and oceans; also, it has dry regions (Cox and Moore, 1993).With a total land area of 2.4% of the world's, the nation is home to 47,513 plant species, or 11.4% of the world's flora, out of the 0.4 million species that have been successfully identified so far (Singh & Dash, 2014).

Madhya Pradesh is recognized as a prominent region of forested terrain within the country, encompassing an expansive area of approximately 4, 63,452 square kilometers. Many academics have previously conducted in-depth research on Madhya Pradesh botanical features. In 1830, Victor Jacquemont made the first records of the plant in the Madhya Pradesh districts of Sidhi, Rewa, Satna, and Panna. After the BSI explored some of the state's most important areas, it published a

www.ignited.in

complete flora of the state of Madhya Pradesh that includes 2724 plant species (Singh et al., 2001).

Research on the Umaria district's flora in Madhya Pradesh was done by Shahu et al. (2012). 351 plant species in all, divided into 276 genera and 100 families, were identified by the researchers. A floristic survey was carried out in the Madhya Pradesh districts of Rewa, Alirajpur, Sidhi, and Satna (Sikarwar and Tiwari, 2014). Six angiospermic taxa were found and recorded as new additions to the Madhva Pradesh flora as a of their investigation: Phyllocephalum result phyllolaenum (DC.) Narayana, Spilanthes radicans Jacq., Physalis angulata L., P. lagascae Roem. & Schult., P. pruinosa L., and Brachiaria mutica (Forssk.) Stapf.

A detailed description of the angiospermic species present in the Madhya Pradesh district of Sidhi was given byTiwari (2014). All 941 species, which are spread over 545 genera and are members of 132 families, have been identified by a thorough record.An investigation into the pteridophytic variety in Sanjay National Park was carried out by Singh et al. (2005). Pteridophytes make up the majority of the ground vegetation during the wet season. The "Sidhi" district of Madhya Pradesh and the "Manendragarh-Chirmiri-Bharatpur" district of Chhattisgarh, India, are home to Saniav National Park, a protected region. The tract is a crucial part of the Sanjay-Dubri Tiger Reserve, covering 2,300 square kilometers (890 square miles) in total (Singh et al., 2005). The present research was conducted to study the biodiversity of medicinally important plants in Sanjay-Dubri Tiger Reserve (M.P.).

RESEARCH METHODOLOGY

Field Survey and Identification of Plants

A field survey was carried out at the Sanjay-Dubri Tiger Reserve in Sidhi during the experimental years. Over the course of two years in a row (2021 to 2023), data was collected. All plant species were collected and identified using conventional floras and references, and their identities were then confirmed by consulting regional experts and the Botanical Survey of India's laboratories.

Examination of Phytosociology

During the two research years (2021 to 2023), three successive seasons of phytosociological research on vegetation were conducted. According to Saxena and Singh (1982), a random selection of quadrats for the herb layer was used to do a quantitative evaluation of the study.Each tree's diameter at breast height (dbh) was noted for each species separately. Curtis and McIntosh's (1950) study protocol involved examining the frequency, density, and abundance of vegetation.

(i) Density

Density calculates a species' abundance by dividing the total number of individuals in all guadrates by the number of quadrates examined. total The equation following determines the density calculation:

Density= Total number of individual of a species in all quadrats

Total number of quadrats studied

(ii) Frequency

Raunkiaer (1934) first established the idea of frequency, which is the number of units of sampling in which a specific species of animal is recorded.

```
Frequency (%):
                    Number of quadrats in which the species occurred
                             Total number of quadrats studied
```

(iii) Abundance

abundance deals with The study of the measurement of different species' populations within a specific ecological community, expressed as a function of area.

```
Abundance =
                   Total number of individual of a species in all quadrats
                  Total number of guadrats in which the species occurred
```

(iv) Basal Area

The surface area that the stems cover at ground level is referred to as the "basal area" and is used to measure the supremacy of a specific plant species.

Basal Area or Dominance = πr^2

Where, r (radius) = average diameter/2

(v) Importance Value Index (IVI)

By comparing a species' relative values of frequency, density, and dominance to those of other plant species in the community, the IVI metric can be used to evaluate a species' importance within that community. The IVI of each tree species was calculated by;

IVI = Relative density + Relative frequency + Relative dor

(a) Relative Density

Relative density is a quantitative measure of a species' population size in relation to the total population size of every species in a given area.

> RD = Density of the individual species x100

> > Density of all the species

(b) Relative Frequency:

The ratio of the distribution of each species within a certain area to the total number of species found there.

RF = Frequency of the individual species X100

Frequency of all the species

(c) Relative Dominance

A species' dominance cannot be determined until its basal cover value has been determined.

RDm: Total basal area of the species X100

Total basal area of all the species

RESULTS

The subtropical climate of the region provides a wealth of floral diversity. There are 142 species of plants of higher elevation from 119 genera and 48 families found within the research zone. Fabaceae has the most species i.e. 20 followed by Poaceae (26), then followed by Rutaceae (7 species), Apocynaceae, Asteraceae, Combretaceae, Convolvulaceae, Malvaceae, Euphorbiaceae, Lamiaceae, Moraceae, Araceae, Asparagaceae, Cucurbitaceae, Cyperaceae, Lythraceae, Rubiaceae, Solanaceae, Anacardiaceae, Dioscoreaceae, Meliaceae, Nyctaginaceae, Oleaceae, Zingiberaceae, Rhamnaceae, Acanthaceae, Amaranthaceae. Annonanceae, Arecaceae, Burseraceae, Aristolochiaceae, Brassicaceae, Colchicaceae, Dipterocarpaceae, Ebenaceae, Elaeocarpaceae, Getianaceae, Hypoxidaceae, Menispermaceae, Musaceae, Myrtaceae, Phyllanthaceae, Papavereaceae, Polypodiaceae, Santalaceae, Sapotaceae, Verbenaceae and Vitaceae. Table 1. Lists the plants that were collected during the study period in alphabetical order.

Table 1.	List of Iden	tified Plant in	Study Region

S.No.	Local Name	Scientific Name	Families
1	Kalmegh	Andrographis paniculata	Acanthaceae
2	Van Chaulai	Amaranthus viridis	Amaranthaceae
3	Char	Buchnania lanzan	Anacardiaceae
4	Aam	Mangifera indica	Anacardiaceae
5	Sitaphal	Annona sqamosa	Annonanceae
6	Madaar	Calotropis gigantia	Apocynaceae
7	Karoda	Carrisa opaca	Apocynaceae
8	Van Karoda	Carrisa spinarum	Apocynaceae
9	Gudmaar	Gymnema sylvestre	Apocynaceae
10	Doodhli	Hemidesmus indicus	Apocynaceae
11	Antmool	Tylophora ropundifolia	Apocynaceae

12	Sooran	Amorphophallus paeoniifolius	Araceae
13	Arabi	Colocasia arabica	Araceae
14	Moneyplant	Epipremnum aureum	Araceae
15	Chhind	Phoenix acaulis	Arecaceae
16	Batilaha	Aristolochia indica	Aristolochiaceae
17	Satavar	Asperagus racemousus	Asparagaceae
18	Safed moosli	Chlorophytum tuberosum	Asparagaceae
19	Jungli Piyaaz	Urginea indica	Asparagaceae
20	Gandhela	Ageratum conyzoides	Asteraceae
21	Ghamira	Eclipta alba	Asteraceae
22	Ghamira	Eclipta prostrata	Asteraceae
23	Gajar Ghaas	Parthenium hysterophorus	Asteraceae
24	Gorakh mundi	Sphaeranthas indicus	Asteraceae
25	Dhaowaal	Tridax procumbens	Asteraceae
26	Van rai	Brassica juntia	Brassicaceae
27	Salai	Boswellia serrata	Burseraceae

28	Kalihaari	Gloriosa superba	Colchicaceae
29	Dhawa	Anogeissus latifolia	Combretaceae
30	Saaja	Terminalia alata	Combretaceae
31	Kahua	Terminalia arjuna	Combretaceae
32	Baheda	Terminalia bellirica	Combretaceae
33	Harad	Terminalia chebula	Combretaceae
34	Saja	Terminalia elliptica	Combretaceae
35	Shankh pushpi	convolvulus prostratus	Convolvulaceae
36	Amarbael	Cuscuta reflexa	Convolvulaceae
37	Sakarkand	lpomea batata	Convolvulaceae

38	Besharam	lpomoea carnea	Convolvulaceae
39	Panchpatiya	Ipomoea pestigridis	Convolvulaceae
40	Kundru	Coccinia grandis	Cucurbitaceae
41	Karella	Momordica charantia	Cucurbitaceae
42	Padora	Momordica dioica	Cucurbitaceae
43	Motha Ghaas	Cyperus rotundus	Cyperaceae
44	Gondila	Cyprus distans	Cyperaceae
45	Nagarmotha	Cyprus scarious	Cyperaceae
46	Khameena	Diascoria alata	Dioscoreaceae
47	Suarkand	Diascoria pentaphyla	Dioscoreaceae
48	Sarai	Shorea robusta	Dipterocarpaceae
49	Tendu	Diospyros melanoxylon	Ebenaceae
50	Pathar-Chatta	Elgtraria acaulis	Elaeocarpaceae

Phytosociological Investigation and Medicinally Important Plants of Sanjay -Dubri Tiger Reserve Sidhi, Madhya Pradesh, India

51	Doodhi	Euphorbia hirta	Euphorbiaceae
52	Senhuda	Euphorbia nerifolia	Euphorbiaceae
53	Ratanjot	Jatropha Curcas	Euphorbiaceae
54	Sindori	Mallotus phillppensis	Euphorbiaceae
55	Lal Ghughuchi	Abrus precatorious	Fabaceae
56	Babool	Acacia arabica	Fabaceae
57	Khair	Acacia catechu	Fabaceae
58	Reunja	Acacia leucophloea	Fabaceae
59	Mahuline	Bauhinia vahlii	Fabaceae
60	Kachnaar	Bauhinia verigata	Fabaceae
61	Kathmahula	Bauhinia racemosa	Fabaceae
62	Paļas	Butea monosperma	Fabaceae
63	Amaltaash	Cassia fistula	Fabaceae

64	Jungli Chakoda	Cassia occidentalis	Fabaceae
65	Sheesham	Dalbergia sisso	Fabaceae
66	Sem	Lablab purpureus	Fabaceae
67	Chhui-Mui	Mimosa pudica	Fabaceae
68	Kevanch	Mucuna pruriens	Fabaceae
69	Karanj	Pongamea pinnata	Fabaceae
70	Sami	Prosopis cineraria	Fabaceae
71	Bilari Kand (Kanda)	Pueraria tuberosa	Fabaceae
72	Chakoda	Senna tora	Fabaceae
73	Imli	Tamarindus indica	Fabaceae
74	Jungli Moong	Vigna trilobata	Fabaceae
75	Bhuini	canscora decussate	Getianaceae
76	Kali Moosli	Curculigo orchioides	Hypoxidaceae
77	Kala Bans	colebrookea oppositifolia	Lamiaceae

78	Pudina	Mentha piperita	Lamiaceae
79	Van Tulsa	Ocimum gratissimum	Lamiaceae
80	Sagaun	Tectona grandis	Lamiaceae
81	Sedha	Lagerstroemia parviflora	Lythraceae
82	Mehandi	Lawsonia inermis	Lythraceae
83	Dhavai	Woodfordia fruticosa	Lythraceae
84	Jangli Bhindi	Abelmoschus ficulneus	Malvaceae
85	Semal	Bombax ceiba	Malvaceae
86	Bariyari	Byttneria herbacea	Malvaceae
87	Gudsakri	Grewia hirsuta	Malvaceae
88	Petua	Hibiscus sabdariffa	Malvaceae
89	Jangli Kanda	Ariopsis peltata	Meliaceae

90	Neem	Azadirachta indica	Meliaceae
91	Giloy	Tinospora cardifolia	Menispermaceae
92	Chota Peepal	Ficus arnottiana	Moraceae
93	Bargad	Ficus benghalensis	Moraceae
94	Peepal	Ficus religiosa	Moraceae
95	Umer	Ficus racemosa	Moraceae
96	Kela	Musa paradisica	Musaceae
97	Jamun	Syzygium cumini	Myrtaceae
98	Punarnawa	Boerhavia diffusa	Nyctaginaceae
99	Bougainvillea	Bougainvillea glabra	Nyctaginaceae
100	Chameli	Jasminum officinale	Oleaceae
101	Parijaat	Nyctanthes arbor- tristis	Oleaceae
102	Ghamoy	Argemone mexicana	Papavereaceae
103	Awla	Phylanthus emblica	Phyllanthaceae
104	Jhaadu ghaas	Aristada adscensionis	Poaceae

105	Katag Bas	Bambusa arundinacea	Poaceae
106	Doob	Cynodon dactylon	Poaceae
107	Makrela Ghaas	Dactyloctenium aegyptium	Poaceae
108	Lathiya Baans	Dendrocalamus strictus	Poaceae
109	Kusa	Desmostachya bipinnata	Poaceae
110	Marbel	Dichanthium annulatum	Poaceae
111	Phulhar	Digitaria bicorris	Poaceae
112	Samai	Echinochloa colona	Poaceae
113	Ghodchara	Eleusin indica	Poaceae
114	Bhurboosi	Eragrostis tenela	Poaceae
115	Choraat	Heretopogon contorus	Poaceae

116	Chheer	Imperata cylindrica	Poaceae
117	Dinanath	Pennisatum pedicellatum	Poaceae
118	Cons	Saccharum munja	Poaceae
119	Laptaua	Setaria verticillata	Poaceae
120	Bhod (Laal Ghaas)	Themeda triandra	Poaceae
121	Chikni Nauri	Polypogum monspeliensis	Polypodiaceae
122	Jharberi	Ziziphus nummularia	Rhamnaceae
123	Barari	Ziziphus oenopila	Rhamnaceae
124	Haldu	Haldina cardifolia	Rubiaceae
125	Kaimma	mitragyna parvifolia	Rubiaceae
126	Kadam	Neolamarckia cadamba	Rubiaceae
127	Bael	Aegle marmelos	Rutaceae
128	Bhelma	Chloroxylon swietebia	Rutaceae

Journal of Advances in Science and Technology Vol. 20, Issue No. 2, September-2023, ISSN 2230-9659

1			
129	Neembu	Citrus reticulata	Rutaceae
130	Kaintha	Feronia elephantum	Rutaceae
131	Kaitha	Limonia acidissma	Rutaceae
132	Meethi Neem	Murraya koenigii	Rutaceae
133	Hatheel	Murraya paniculata	Rutaceae
134	Chandan	Santalum album	Santalaceae
135	Mahua	Madhuca indica	Sapotaceae
136	Rasbhari	Physalis peruviana	Solanaceae
137	Масоу	Solanum nigrum	Solanaceae
138	Bhatkaiya	Solanum virginianum	Solanaceae
139	Gulmehandi	Lantana camara	Verbenaceae
140	Hadjhod	Cissus quadrangularis	Vitaceae
141	Haldi	Curcuma longa	Zingiberaceae
142	Adrak	Zingiber officinale	Zingiberaceae

Upon taxonomic classification of the families, genera, and species, it was seen that the flora was dominated by dicots, with 126 species, while the monocots were represented by 16 species.

Figure 1. Showing The Count of Monocot and Dicots Found in Survey

Classifying the plant species found in a research area based on their division and life form provides important information about the ecological characteristics and diversity of the community of plants. Therophytes, which comprise 39 species, and Macrophanerophytes, which comprise 51 species, are the most common life forms found in the environment. Chamaephytes, which consist of 10 species, and Geophytes, which consist of 20 species.The co-occurrence of Liana/Climber (9 species) and Epiphytes (1 species) serves as an indication of the presence of species that are adapted to climbing and inhabiting the canopy, hence emphasizing the complex vertical structure of the vegetation.

Phytosociological Investigation

Basal Area

With basal areas ranging from 2.54 m² to 4.52 m², some of the important tree species that made a substantial contribution to the ecosystem's base area were *Terminalia arjuna*, *Shorea robusta*, *Tecton grandis*, and *Ficus benghalensis*. The basal area

varied from 0.79 square metres to 2.01 square metres, and climbers such as *Urginea indica*, *Tinospora cardifolia*, and *Mucuna pruriens* had a major influence on it. Additionally, the lower basal portions of a number of herbs, including *Imperata cylindrical*, *Zingiber officinale*, and *Eclipta prostrata*, added to the overall variety of the study area. Table 2. provides detailed information on the average diameter and basal areas.

Table 2. Basal Area Detail of the Study Region

SI. No.	NameofTreespecies	Average diameter in m	Basal area in m		
1	Abelmoschus ficulneus	1.6	2.011		
2	Abrus precatorious	1.4	1.54		
3	Acacia arabica	1.2	1.13		
4	Acacia catechu	1.0	0.79		
5	Acacia leucophloea	1.6	2.01		
6	Aegle marmelos	yle marmelos 1.4			
7	Ageratum conyzoides	0.6	0.28		
8	Amaranthus viridis	0.8	0.50		
9	Amorphophallus paeoniifolius	0.6	0.29		
10	Andrographis paniculata	Andrographis paniculata 0.8			
11	Annona sqamosa	1.2	1.13		
12	Anogeissus latifolia	1.6	2.01		
13	Argemone mexicana	0.6	0.29		
14	Ariopsis peltata	0.6	0.28		
15	Aristada adscensionis	NA	NA		

16	Aristolochia indica	0.6	0.28
10	Anatolocina indica	0.0	0.20
17	Aspargus racemosus	1.0	0.79
18	Azadirachta indica	1.2	1.13
19	Bambusa arundinacea	NA	NA
20	Bauhinia vahlii	1.0	0.79
21	Bauhinia verigata	1.6	2.01
22	Bauhinia racemosa	1.4	1.54
23	Butea monosperma	1.0	0.79
24	Boerhavia diffusa	0.8	0.50
25	Bombax ceiba	1.2	1.13

Phytosociological Investigation and Medicinally Important Plants of Sanjay -Dubri Tiger Reserve Sidhi, Madhya Pradesh, India

26	Boswellia serrata	1.0	0.79
27	Bougainvillea glabra	1.4	1.53
28	Brassica juntia	0.8	0.50
29	Buchnania lanzan	1.6	2.01
30	Byttneria herbacea	1.2	1.13
31	Calotropis gigantia	1.0	0.79
32	Canscora decussate	0.6	0.28
33	Carrisa opaca	1.4	1.54
34	Carrisa spinarum	1.2	1.13
35	Cassia fistula	1.2	1.13
36	Cassia occidentalis	1.0	0.79
37	Chlorophytum tuberosum	0.8	0.50
38	Chloroxylon swietebia	1.6	2.01
39	Cissus quadrangularis	1.2	1.13
40	Citrus reticulata	1.0	0.79

41	Coccinia grandis	0.8	0.50
42	Colebrookea oppositifolia	0.6	0.28
43	Colocasia arabica	1.0	0.79
44	Convolvulus prostratus	0.6	0.28
45	Curculigo orchioides	0.8	0.50
46	Curcuma longa	0.6	0.28
47	Cuscuta reflexa	0.8	0.50
48	Cynodon dactylon	NA	NA
49	Cyperus rotundus	NA	NA
50	Cyprus distans	NA	NA
51	Cyprus scarious	NA	NA

52	Dactyloctenium aegyptium	NA	NA
53	Dalbergia sisso	1.8	2.55
54	Dendrocalamus strictus	NA	NA
55	Desmostachya bipinnata	NA	NA
56	Diascoria alata	1.0	0.79
57	Diascoria pentaphyla	0.8	0.50
58	Dichanthium annulatum	NA	NA
59	Digitaria bicorris	NA	NA
60	Diospyros melanoxylon	1.8	2.54
61	Echinochloa colona	NA	NA
62	Eclipta alba	1.0	0.79
63	Eclipta prostrata	0.8	0.50
64	Eleusin indica	NA	NA
65	Elgtraria acaulis	1.2	1.13
66	Epipremnum aureum	1.0	0.79

67	Eragrostis tenela	NA	NA
68	Euphorbia hirta	0.8	0.50
69	Euphorbia nerifolia	1.4	1.54
70	Feronia elephantum	1.2	1.13
71	Ficus arnottiana	1.0	0.79
72	Ficus benghalensis	1.8	2.54
73	Ficus raligiosa	1.6	2.01
74	Ficus racemosa	1.2	1.13
75	Gloriosa superba	0.7	0.39
76	Grewia hirsuta	1.0	0.79
77	Gymnema sylvestre	0.8	0.50

78	Haldina cardifolia	1.4	1.54
79	Hemidesmus indicus	0.6	0.28
80	Heretopogon contorus	NA	NA
81	Hibiscus sabdariffa 1.0		0.79
82	Imperata cylindrica	NA	NA
83	lpomea batata	0.8	0.50
84	lpomoea carnea	1.2	1.14
85	lpomoea pestigridis	1.0	0.79
86	Jasminum officinale	1.4	1.54
87	Jatropha Curcas	1.6	2.01
88	Lablab purpureus	1.2	1.13
89	Lantana camara	0.8	0.50
90	Lagerstroemia parviflora	1.4	1.54
91	Lawsonia inermis	1.2	1.13
92	Limonia acidissma	1.0	0.79
93	Madhuca indica	1.6	2.01

94	Mallotus phillppensis	1.4	1.54
95	Mangifera indica	1.8	2.55
96	Mentha piperita	0.8	0.50
97	Mimosa pudica	0.6	0.28
98	mitragyna parvifolia	1.4	1.54
99	Momordica charantia	1.0	0.79
100	Momordica dioica	0.8	0.50
101	Mucuna pruriens	1.2	1.13
102	Murraya koenigii	1.0	0.79
103	Murraya paniculata	1.4	1.54

104	Musa paradisica	1.6	2.01
105	Neolamarckia cadamba	1.8	2.54
106	Nyctanthes arbor- tristis	1.2	1.13
107	Ocimum gratissimum	0.8	0.50
108	Parthenium hysterophorus	0.6	0.28
109	Pennisatum pedicellatum	NA	NA
110	Phoenix acaulis	1.2	1.13
111	Phylanthus emblica	1.6	2.01

Journal of Advances in Science and Technology Vol. 20, Issue No. 2, September-2023, ISSN 2230-9659

112	Physalis peruviana	0.8	0.50	
113	Polypogum monspeliensis	0.6	0.28	
114	Pongamea pinnata	1.0	0.79	
115	Prosopis cineraria	1.2	1.14	
116	Pueraria tuberosa	1.4	1.54	
117	Saccharum munja	NA	NA	
118	Santalum album	1.6	2.01	
119	Senna tora	1.0	0.79	
120	Setaria verticillata	NA	NA	
121	Shorea robusta	2.2	3.80	
122	Solanum nigrum	0.6	0.29	
123	Solanum virginianum	1.0	0.79	
124	Sphaeranthas indicus	0.8	0.50	
125	Syzygium cumini	1.4	1.54	
126	Tamarindus indica	1.2	1.13	
127	Tectona grandis	2.4	4.52	
128	Terminalia alata	1.2	1.13	
129	Terminalia arjuna	2.0	3.14	
			r	
130	Terminalia bellirica	0.53	0.21	
131	Terminalia chebula	0.76	0.45	
132	Terminalia elliptica	1.8	2.544	
133	Themeda triandra	NA	NA	
134	Tinospora cordifolia	1.2	1.13	
135	Tridax procumbens	0.4	0.13	
136	Tylophora ropundifolia	1.0	0.79	
137	Urginea indica	1.6	2.01	
138	Vigna trilobata	0.8	0.50	
139	Woodfordia fruticosa	1.2	1.13	
140	Zingiber officinale	0.6	0.28	
141	Ziziphus nummularia	1.4	1.54	
142	Ziziphus oenopila	0.57	0.25	
	TOTAL		139.4	
L			1	

Habit wise Phytosociological Findings

Trees

Shorea robusta was found to have the greatest frequency of 77 in the Sanjay-Dubri Tiger Reserve, according to the results. *Lagerstroemia parviflora* was the tree that was founded the second most frequently (63). *Diospyros melanoxylon* showed the next frequency pattern, with a frequency of 53; *Ficus racemosa* and *Madhuca indica* were observed to have the same frequency of 50 from both target area sites. Similarly, *Bombax ceiba* was found to have the highest abundance in the tree category, with a value of 18.6. *Diospyros melanoxylon* (26.64), *Shorea robusta* (26.26), *Terminalia arjuna* (22.91), and *Bombax ceiba* (19.42) were the trees with the highest reported IVI.

Table 3. Phytosociological Study of Identified

Trees

Sr.N o.	Scientific Name	Densit y (ind/h a)	Frequen cy	Abundan ce	Relativ e Densit y	Relative Frequen cy	Relative Dominan ce	IVI
1	Shorea robusta	1.56	77.0	2.04	5.39	12.51	8.36	26.2 6
2.	Lagerstroemia parviflora	1.13	63.0	1.78	3.90	10.23	1.97	16.1 1
3	Diospyros melanoxylon	02.8	53.0	5.25	9.67	8.61	8.36	26.6 4
4.	Madhuca indica	1.76	50.0	3.53	6.08	8.12	1.16	15.3 7
5.	Syzygium cumini	2.53	50.0	5.06	8.74	8.12	1.16	18.0 3
6.	Terminalia arjuna	04.6	35.00	13.8	15.89	5.69	1.33	22.9 1
7.	Butea monosperma	1.06	27.0	4.00	3.66	4.39	8.36	16.4 1
8.	Azadirachta indica	02.9	27.0	10.8	10.02	4.39	3.29	17.6 9
9.	Ficus recemosa	1.53	27.0	5.75	5.28	4.39	2.08	11.7 5
10	Acacia arabica	0.73	26.6	2.75	2.52	4.32	1.21	8.05
11	Anogeissus latifolia	0.43	23.0	1.85	1.49	3.74	2.08	7.30
12	Bombax ceiba	3.73	20.0	18.6	12.88	3.25	3.29	19.4 2
13	Feronia elephantum	00.7	17.0	04.2	2.42	2.76	4.70	9.88
14	Buchnania lanzan	0.43	17.0	02.6	1.49	2.76	6.40	10.6 5
15	Tamarindus indica	00.2	17.0	01.2	0.69	2.76	2.08	5.53
16	Aegle marmelos	0.46	13.0	03.5	1.59	2.11	1.21	4.91
17	Bauhinia racemosa	0.16	13.0	1.25	0.55	2.11	3.29	5.95
18	Boswellia serrata	1.13	13.0	8.51	3.90	2.11	8.36	14.3
19	Mangifera indica	00.1	10.0	1.00	0.35	1.62	6.40	8.3
20	Tectona grandis	0.40	10.0	4.00	1.38	1.62	3.29	6.2
21	Acacia catechu	0.13	7.00	2.00	0.45	1.14	1.16	2.7
22	Terminalia alata	0.13	7.00	2.00	0.45	1.14	4.70	6.2
23	Terminalia bellirica	0.13	7.00	2.00	0.45	1.14	4.70	6.2
24	Chloroxylon swietebia	0.16	3.00	5.00	0.55	0.49	4.70	5.7
25	Terminalia chebula	0.06	3.00	2.00	0.21	0.49	6.40	7.1
	Total	28.95	615.6	114.47	100	100	100	300

Herbs

The table 4 provides a concise display of the results of the regional herb analysis. The species with the highest density was Ageratum conyzoides, which had 6.3 individuals per square meter. It also showed the highest abundance, with a count of 15 individuals, and frequency, with 48 instances overall. It also contributed significantly to the Importance Value Index (IVI) at 33.8%, having the highest values in respect to relative density (13.1%), relative frequency (8.4%), and relative dominance (12.3%). Other notable species found in the research region include Andrographis paniculata, which has an Importance Value Index (IVI) of 29.5% and a population density of 5.3 individuals per square meter. In addition, Mimosa pudica has a high frequency of 53 occurrences, resulting in an IVI of 22.3%. The plant composition of the environment under study shows a diversity of species that serve

various ecological roles. For evaluating the total importance of these species, the Importance Value Index (IVI) provides a complete measure.

Table 5. Medicinally and Economically Importance of Identified Species

Table 4. Phytosociological Study of Identified Herbs

Sr.N o.	Scientific Name	Density(ind /ha)	Freque ncy	Abunda nce	Relati ve Densi ty	Relative Freque ncy	Relative Domina nce	IVI
1	Mentha piperita	1.1	03	03	2.3	0.5	1.6	4.4
2	Cyprus distans	1.2	13	09	2.5	2.3	0.0	4.8
3	Physalis peruviana	1.3	07	02	2.7	1.2	1.8	5.7
4	Chlorophytum tuberosum	1.8	04	04	3.7	0.7	2.0	6.5
5	Argemone mexicana	1.5	10	02	3.1	1.7	2.2	7.0
6	Cyprus scarious	1.7	27	07	3.5	4.7	0.0	8.2
7	Amaranthus viridis	1.2	23	05	2.5	4.0	3.6	10. 1
8	Elgtraria acaulis	1.6	13	13	3.3	2.3	5.3	10. 9
9	Solanum nigrum	1.4	27	05	2.9	4.7	3.8	11. 4
10	Brassica juntia	2.9	27	11	6.0	4.7	0.8	11. 5
11	Eclipta prostrata	1.7	23	07	3.5	4.0	4.3	11. 8
12	Parthenium hysterophorus	1.6	27	06	3.3	4.7	4.1	12. 2
13	Curculigo orchioides	2.0	20	10	4.1	3.5	5.1	12. 8
14	Senna tora	1.5	30	05	3.1	5.2	5.1	13. 4
15	Boerhavia diffusa	1.5	37	04	3.1	6.5	5.2	14. 7
16	convolvulus prostratus	2.2	30	07	4.6	5.2	5.3	15. 1
17	Solanum virginianum	2.2	27	09	4.6	4.7	6.3	15. 6
18	canscora decussate	2.6	37	07	5.4	6.5	6.3	18. 1
19	Byttneria herbacea	2.8	40	07	5.8	7.0	7.4	20. 2
20	Mimosa pudica	2.8	53	05	5.8	9.2	7.2	22. 3
21	Andrographis paniculata	5.3	47	11	11.0	8.2	10.3	29. 5
22	Ageratum conyzoides	6.3	48	15	13.1	8.4	12.3	33. 8
	Total	48.2	573	154	100.0	100.0	100.0	300 .0

Medicinally and Economically Important species of Study Area

In Sanjay-Dubri Tiger Reserve, many medicinal plants were identified. Out of them 20 were extensively used in medicines or were used by the locals in traditional ways. The following table 5 shows the medicinal importance of each species:

S.No	Name of the species	Family	Uses
1	Acacia catechu	Mimosaceae	The roots heal toothache and rheumatism, while the bark is used to treat hemoptysis, menstruation problems, and diarrhea. Cutch, a brown dye made from heart wood, is used to color khaki, olive, and brown in a variety of tints.
2	Acacia arabica	Fabaceae	Acacia arabica bark is used in traditional medicine to treat a wide range of ailments. It is widely known to possess astringent, antimicrobial, and anti-inflammatory properties.
3	Aegle marmelos	Rutaceae	Fruits are consumable and can be used to treat dysentery and chronic diarrhea. The pulp from fruits is used as gum. Antibiotic qualities are found in leaves, fruits, and roots. Additionally useful in treating fever, cholera, constipation, diabetes, jaundice, and nausea.
4	Azadirachta indica	Meliaceae	Leaves have insecticidal, diuretic, anthelmintic, and expectorant properties. Bark is used to treat skin illnesses, jaundice, liver problems, and diarrhea. Leaves are used to cure boils, colds, diarrhea, dysentery, malaria, scabies, and tuberculosis.
5	Bauhinia variegata	Caesalpiniaceae	Twigs and leaves are fed to animals. utilized as wood fuel. Flower buds are combined with curd and cooked like vegetables. Bark paste is used as an anthelmintic and tonic for skin conditions.
6	Butea monosperma	Fabaceae	Tonics and aphrodisiacs contain leaves as a component. Astringent, purifying, and diuretic flowers. gum used as a diarrhea remedy. Yellow textile dye is produced from flowers. Bark that is tanned. Disposable plates made from leaves (<i>Duna&Pattals</i>). Root decoction is used to treat tuberculosis.
7	Chloroxylon swietebia	Rutaceae	utilized in conventional medicine to treat diarrhea, skin disorders, and ulcers.
8	Citrus reticulata	Rutaceae	rich in vitamin C and packed with antioxidants. It is used to treat coughs and support skin health in traditional medicine because of its digestive qualities.
9	Ficus benghalensis	Moraceae	For pain in the muscles and joints, use latex. Bark decoction is used to treat dysentery and diarrhea. utilized as an aphrodisiac and for eye disorders as well.
10	Ficus racemosa	Moraceae	While fruits are used to treat diabetes, leprosy, and stomach issues, leaves are used to treat blisters, boils, diarrhea, dysentery, piles, and urinary symptoms.
11	Ficus religiosa	Moraceae	Bark infusion is used to treat skin infections and ulcers
12	Limonia acidissima	Rutaceae	It is used in conventional medicine to treat digestive problems. It is believed to have antimicrobial properties and to enhance respiratory health.
13	Madhuca indica	Saponaceae	In traditional medicine, the flowers, seed oil, and bark are used. Its antibacterial, anti-inflammatory, and antioxidant properties are widely known.
14	Phyllanthus emblica	Euphorbiaceae	utilized to make the laxative powder triphala. Also used to treat heart problems, urinary issues, and anemia.
15	Pongamia pinnata	Fabaceae	In addition to using the oil extracted from the seeds to treat skin disorders, traditional medicine also makes use of the plant's antibacterial and anti-inflammatory properties.
16	Syzygium cumini	Myrtaceae	Bark and fruits are used to cure diabetes. Fruit is eatable too.
17	Tamarindus indica	Fabaceae	High antioxidant content; several health advantages; utilized as a laxative and digestive aid in traditional medicine.
18	Terminalia bellirica	Combretaceae	Fruits used for gastrointestinal disorders, indigestion, pneumonia, and stomach disorders. Cash earnings; wood fuel. Edible seeds.

19	Terminalia chebula	Combretaceae	In Ayurvedic medicine, Haritaki, also known as <i>Terminalia</i> chebula, is a crucial component of Triphala. Its stated health advantages include promoting better digestion, toxin removal, and rejuvenation.
20	Terminalia arjuna	Combretaceae	Dried or uncooked fruits used to treat indigestion, pneumonia, and stomach ailments. Revenue in cash; fuel wood.

CONCLUSION

To sum up, the phytosociological study conducted in Madhya Pradesh's Sanjay-Dubri Tiger Reserve has provided important new understandings of the variety of plant species that live there. In total 142 species of plants were identified over there. 22 species of medicinally significant plants found in the region's great biodiversity have long been used by

Journal of Advances in Science and Technology Vol. 20, Issue No. 2, September-2023, ISSN 2230-9659

the local population for a variety of health-related uses. The results conveyed that among trees Diospyros melanoxylon and in herbs Mimosa pudica had high frequency. The findings revealed that Lagerstroemia parviflora (16.11), Madhuca indica (18.42), Acacia arbica (16.41), and Tamarindus indica (19.42) were the trees with the highest reported IVI. In case of herbs, the species with the highest density was Ageratum conyzoides, which had 6.3 individuals per square meter. It also showed the highest abundance, with a count of 15 individuals, and frequency, with 48 instances overall. It also contributed significantly to the Importance Value Index (IVI) at 33.8%, having the highest values in respect to relative density (13.1%), relative frequency (8.4%), and relative dominance (12. 3%). In addition, medicinal importance of the 20 species is highlighted in this article. Overall, this research article shed light in flora of Sanjay-Dubri Tiger Reserve. The present investigation has facilitated a substantial augmentation in the botanical understanding of this crucial ecological niche.

REFERENCES

- 1. Cox, C. B., Moore, P. D., & Ladle, R. J. (1993). Biogeography: an ecological and evolutionary approach. John Wiley & Sons.
- 2. Curtis, J. T., & Mcintosh, R. P. (1950). The interrelations of certain analytic and synthetic phytosociological characters. *Ecology*, *31*(3), 434-455.
- 3. FAO and UNEP. (2020). The State of the World's Forests 2020. Forests, biodiversity and people. Rome.
- Noss, R. F. (1990). Indicators for monitoring biodiversity: a hierarchical approach. *Conservation biology*, 4(4), 355-364.
- 5. Raunkiaer, C. (1934). The life forms of plants and statistical plant geography; being the collected papers of C. Raunkiær. *The life forms* of plants and statistical plant geography; being the collected papers of C. Raunkiaer.
- Sahu, K. P., Radhika, U., Masih, S. K., & Vlvek, T. (2012). Contribution to the flora of Umaria district of Madhya Pradesh. *Journal of Economic and Taxonomic Botany*, 36(2), 261-274.
- 7. Saxena, A. K., & Singh, J. S. (1982). A phytosociological analysis of woody species in forest communities of a part of Kumaun Himalaya. *Vegetatio*, *50*(1), 3-22.
- 8. Sikarwar, R.L.S. and Tiwari, A.P. (2014). Additions to the flora of Madhya Pradesh. Phytotaxonomy. 14: 100-102
- 9. Sikarwar, R.L.S. and Tiwari, A.P. (2014). Additions to the flora of Madhya Pradesh. Phytotaxonomy. 14: 100-102
- 10. Singh, N. P, Khanna, K. K, Mudgal, V. and Dixit, R. D. (2001). Flora of M. R, *BSI, Calcutta. Vol.-3.*

- Singh, P. and Dash, S.S. (2014). Plant Discoveries 2013 – New Genera, Species and New Records. Botanical Survey of India, Kolkata.
- 12. Singh, S., Dixit, R. D., & Sahu, T. R. (2005). Pteridophytic Diversity Of Sanjay National Park (Sidhi), Madhya Pradesh. Indian Forester, 131(4), 574.
- 13. Tiwari, A.P. (2014). Inventory of angiosperms taxa of Sidhi district, Madhya Pradesh. *J. Econ. Taxon. Bot. 38*(3-4), 395–440.
- 14. Turnbull, L. A., Levine, J. M., Loreau, M., & Hector, A. (2013). Coexistence, niches and biodiversity effects on ecosystem functioning. *Ecology letters*, *16*, 116-127.
- 15.

Corresponding Author

Diwakar Singh*

Govt. SGS College, Sidhi (M.P.)