

A study on irrationality of some numbers

Priyanka

Research Scholar, Singhania University

Rajasthan, India

INTRODUCTION

GNITED MINDS

journals

Suppose that α and β are positive irrational numbers. In this paper, we give the following criterion that $\frac{\alpha}{\beta}$ is an irrational number.

THEOREM : Suppose that φ and ψ are positive functions such that $\lim_{q \rightarrow \infty} \frac{\varphi(q)}{\psi(q)} = \infty$. Let k be an

arbitrary fixed positive number with $k \geq 1$, and suppose that $\frac{\psi(q)}{k^2 \psi(kq)} = O(1)$ as $q \rightarrow \infty$. Let α and β be positive irrational numbers. Suppose that :

(1) there exists a number $q' = q'(\alpha)$ such that $\left| \alpha - \frac{p}{q} \right| > \frac{\varphi(q)}{q}$ for all $(p, q) \in \mathbb{Z} \times \mathbb{N}$ with $q \geq q'$. and

(II) the inequality $\left| \beta - \frac{p}{q} \right| < \frac{\psi(q)}{q}$ has infinitely many solutions $(p, q) \in \mathbb{Z} \times \mathbb{N}$. Then $\frac{\alpha}{\beta}$ is an irrational number.

Proof : Let q be a sufficiently large integer to ensure the validity of the later argument. Without

any loss of generality, we may assume that $\alpha < \beta$. Suppose that $\frac{\alpha}{\beta}$ is a rational number, so that

$\frac{\alpha}{\beta} = \frac{P}{Q}$, where P and Q are positive integers. Now, let $\frac{p}{q}$ be a rational number such that

$\left| \beta - \frac{p}{q} \right| < \frac{\psi(q)}{q}$. Since $\beta - \frac{p}{q} = \frac{P}{Q}\alpha - \frac{p}{q} = \frac{Q}{P}\left[\alpha - \frac{Pp}{Qq} \right]$, we find that $\left| \beta - \frac{p}{q} \right| > \left| \alpha - \frac{Pp}{Qq} \right| = \left| \alpha - \frac{p^*}{q^*} \right|$.

where $p^* = Pp$ and $q^* = Qq$.

By the statement (I), we obtain

$$\left| \alpha - \frac{p^*}{q^*} \right| > \frac{\varphi(q^*)}{q^*}.$$

This implies that $\left| \beta - \frac{p}{q} \right| > \frac{\varphi(q^*)}{q^*}$. (1)

and by the assumption, we obtain

$$\left| \beta - \frac{p}{q} \right| < \frac{\psi(q)}{q} = Q \cdot \frac{\psi(q)}{\psi(Qq)} \cdot \frac{\psi(q^*)}{q^*} = Q^3 \cdot \frac{\psi(q^*)}{q^*} \cdot O(1) < \frac{\psi(q^*)}{q^*} \text{ as } q \rightarrow \infty. \quad (2)$$

The relation (2) contradicts (1), and the theorem is proved.

EXAMPLES

For $\alpha = e$, Okano [3] proved that

$$\phi(q) = \frac{\log \log q}{3q \log q}.$$

Example 1 : If β is a Liouville number, then e/β is an irrational number.

Proof : As we can put $\psi(q) = \frac{1}{q^2}$, we deduce that e/β is an irrational number.

Example 2 : Let m and k be integers with $m \geq 0$ and $k \geq 2$. If $\beta = [a_0, a_1, a_2, a_3, \dots] = [m, 1^k, 2^k, 3^k, \dots]$, then e/β is an irrational number.

Proof : Let $\frac{p_n}{q_n}$ be the n^{th} convergent of β . Since $q_n = n^k q_{n-1} + q_{n-2} \leq (n^k + 1)q_{n-1} < (n+1)^k q_{n-1}$ for $n \geq 2$, we have $q_n < (n-1)^k q_{n-1} < \dots < ((n+1)!)^k$ for $n \geq 1$.

Hence,

$$\log q_n < k \sum_{j=1}^{n+1} \log j < k \int_1^{n+2} \log x dx = k((n+2)\log(n+2) - (n+1))$$

Accordingly, $a_{n+1} = (n+1)^k \log q_n$ for all sufficiently large n , then

$$\left| \beta - \frac{p_n}{q_n} \right| < \frac{1}{q_n q_{n+1}} < \frac{1}{q_{n+1} q_n^2} < \frac{1}{q_n^2 \log q_n}$$

has infinitely many solutions (q_n, q_{n+1}) . Consequently, as we can put $\psi(q) = \frac{1}{q \log q}$ we deduce that e/β is an irrational number.

REFERENCES

- P. Bundschuh, On simple continued fractions with partial quotients in arithmetic progressions, Lithuanian Math. J., 38 (1998), 15-26.
- S. Lang, Introduction to Diophantine Approximations, Addison-Wesley, 1966.
- T. Okano, A note on the rational approximations to e , Tokyo J. Math., 15 (1992), 129-33.
- W.M Schmidt, Diophantine Approximation, Lecture Notes in Math., 785, Springer, 1980.

GNITED MINDS
Journals