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INTRODUCTION 

 

Suppose that   and  are positive irrational numbers. In this paper, we give the following 

criterion that  is an irrational number. 

 

THEOREM : Suppose that  and  are positive functions such that . Let k be an 

arbitary fixed positive number with , and suppose that  as . Let  and  

be positive irrational numbers. Suppose that : 
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(1) there exists a number q' = q'( ) such that  for all  with . and 

 

(II) the inequality  has infinitely many solutions . Then  is an irrational 

number. 

 

Proof : Let q be a sufficiently large integer to ensure the validity of the later argument. Without 

any loss of generality, we may assume that . Suppose that  is a rational number, so that 

 , where P and Q are positive integers. Now, let  be a rational number such that 

. Since . we find that . 

 

where p* = Pp and q* = Qq. 

 

By the statement (I), we obtain 

 

     

 

This implies that         (1) 
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and by the assumption, we obtain 

 

  (2) 

 

The relation (2) contradicts (1), and the theorem is proved. 

 

 

EXAMPLES 

 

For , Okano [3] proved that  

 

Example 1 :  If   is a Liouville number, then  is an irrational number. 

 

 

Proof :  As we can put , we deduce that  is an irrational number. 
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Example 2 : Let m and k be integers with  and . If , then 

 is an irrational number. 

 

Proof :  Let  be the n
th
 convergent of . Since 

 for , we have  for . 

 

Hence, . 

 

Accordingly,  for all sufficiently large n, then 

 

    

 

has ifinitely many solutions (qn,qn). Consequently, as we can put we deduce that   

is an irrational number. 
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