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ABSTRACT: 

 Here we consider sequential quadratic programming methods (SQP methods) for the 

general optimization problem 

 

                  

 

 As with the BCL and LCL approaches, SQP methods use a sequence of subproblems 
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to _nd estimates  that reduce certain augmented Lagrangians. An important function of 

the subproblems is to estimate which inequalities in  are active. Rather many 

iterations (called minor iterations) may be needed to solve each subproblem. 

 

 In BCL and LCL methods, the subproblem objective is the current augmented Lagrangian, 

which must be evaluated each minor iteration. In MINOS, for example, the Reduced-Gradient 

method that solves the LCL subproblems requires an average of 2 or 3 evaluations of the functions 

and gradients per minor iteration. This is acceptable if the function and gradient evaluations are 

cheap (as they are in the GAMS and AMPL environments) but may be prohibitive in other 

applications. For example, shape optimization in aerospace design requires the solution of a partial 

differential equation each time _(x) and c(x) are evaluated. 

 

 SQP methods economize by using quadratic programming (QP) subproblems to estimate 

the set of active constraints. Again, many minor iterations may be needed to solve the 

subproblems, but the functions and gradients are not being evaluated during that process. 

 

 An NPSOL Application 

 

 NPSOL [9] is a successful \dense" SQP implementation. It has found wide use within the 

NAG Library and has proved remarkably robust and efficient on highly nonlinear optimization 

problems, particularly within the aerospace industry. 
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 For interest, the largest application we know of was a trajectory optimization at McDonnell 

Douglas Space Systems involving about 2000 variables and constraints, computing controls for 

the last breath-taking seconds of fiight of the DC-Y, a pro- posed SSTO (Single-Stage-To-Orbit) 

manned spacecraft. The aim was to minimize the fuel needed as the rocket, descending nose-first 

to Earth, rotated from an alti- tude of 2800 feet just in time to land on its tail. NPSOL's solution 

showed that the landing maneuver could be accomplished using half the fuel estimated by 

classical techniques. 

  

 A second optimization was used to determine when the rotation should begin. With an extra 

constraint limiting acceleration to 3g (since a human crew would be aboard), the optimal rotation 

altitude proved to be only 1400 feet|the height of the Empire State Building. Such touchdowns 

would be far more abrupt and astonishing than the Apollo moon landings. (More like the Lunar 

Excursion Module's take-off from the moon played in reverse!) 

 

 Quadratic Approximations in a Subspace 

 

 Linearized constraints are a key component of SQP methods, just as they are for LCL 

methods. They define a subspace in which it is reasonable to form a quadratic approximation to 

the augmented Lagrangian. Let  be the current solution estimate and  be the current 

penalty parameter. Also define .  The following functions are needed: 

Linear approximation to c(x):  

Departure from linearity:  
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Modified augmented Lagrangian: 

 

 

 The last four expressions simplify greatly when . In particular, , 

 and terms involving J(x) and vanish: 

 

  

 

 With the quadratic approximation to Mk(x) at xk on the subspace 

is therefore 

 

  

 

where the quadratic term may or may not be available. 
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NPSOL 

 

Recall that the MINOS subproblem takes the form 

 

 

 

 The stabilized LCL method adapts early subproblems judiciously to ensure global 

convergence, but ultimately the subproblems become  and their solutions  converge 

rapidly, as predicted by Robinson (1972). 

 

 The SQP methods in NPSOL and SNOPT are based on the same subproblem, but with the 

objective  replaced by a quadratic approximation : 

 

 

 

where Hk is a quasi-Newton approximation to . To achieve global con- vergence, QPk 

is regarded as providing a search direction along which the augmented Lagrangian may 

be reduced (as a function of both primal and dual variables). 
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 Note that the true Hessian of Mk(x) is zero in rows and columns associated with linear 

variables. In NPSOL, slack variables are therefore excluded from Hk, and in SNOPT both slacks 

and other linear variables in x are excluded. The quasi-Newton Hessian approximations are 

therefore of the form, 

 

 

 

where is positive definite. The positive-definiteness provides an intrinsic bound on the 

relevant parts of , improving the validity of the quadratic model. 

 

 NPSOL's Merit Function 

 Let be the primal and dual solution to QPk. NPSOL forms the search direction 

 

 

 

and seeks a steplength  such that moving to the point  

  produces a sufficient decrease in the augmented Lagrangian 
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 Initially . Later,  is increased if necessary to ensure descent for the merit 

function. It may also be decreased a limited number of times, because a _nite (unknown) value is 

always adequate for well defined problems, and because  becomes acceptable within some 

neighborhood of a solution to NCB. 

 

 The global convergence properties of NPSOL's linesearch strategy are described in [11]. 

The QP subproblems are assumed to be feasible (and to be solved accurately). 

Hessian Updates 

 A dense triangular factorization  is maintained in NPSOL. After the 

linesearch, a BFGS update of the form 

 

 

is made to improve the quality of the Hessian approximation within some space. Various choices 

are possible for the vectors rk and sk. They reect the change in x and the change in gradient of 

some modified Lagrangian  defined 

with the latest estimate of y (but where possible). 
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LSSOL 

 

 NPSOL uses the least-squares solver LSSOL [5] for the subproblems QPk. LSSOL deals 

directly with the triangular factor Rk. It is virtually unique in avoiding the squared condition 

number that most solvers would fall prey to with Hessians of the form  

 SNOPT 

 

 The reliability of NPSOL and LSSOL allowed them to be applied to increasingly large 

problems (particularly at McDonnell Douglas). However, LSSOL uses orthogonal transformations 

of J(xk) to solve the QP subproblems, and as problem size increases the total cost becomes 

dominated by the associated linear algebra. 

 To a large extent, SNOPT is a sparse SQP implementation that combines the virtues of 

MINOS and NPSOL. Sparse Jacobians are handled as in the Reduced- Gradient method (using 

LUSOL to maintain a sparse basis factorization), and the same merit function as in NPSOL 

ensures global convergence. 

 The primary innovation is a method for treating the QP Hessian in sparse form. Also, 

infeasible problems NCB are dealt with more methodically by including an  penalty term 

within the problem definition (where e is a vector of ones): 

The QP Subproblem 

The SNOPT subproblems include the  penalty terms verbatim: 
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 Initially , but it is set to  if  proves to be 

infeasible or if the norm of the dual variables for  becomes larger than  

 

 Optimization continues with that value of  until an optimal solution of NCB() has been 

obtained. If the nonlinear constraints are not satisfied ,  is increased and 

optimization continues. If  reaches an allowable maximum value and the nonlinear constraints are 

still violated, the problem is declared infeasible. At this stage, SNOPT has essentially minimized 

. 

 

SQOPT 

 

 SNOPT includes a sparse QP solver, SQOPT, which employs a two-phase active set 

algorithm to achieve feasibility and optimality. SQOPT implements elastic programming 

implicitly. Any specified bounds on the variables or constraints may be elastic. The associated 

variables or slacks are given a piecewise linear objective function that penalizes values outside the 

\real" bounds. 
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 If  in  (perhaps because previous QP subproblems were infeasible), 

SNOPT defines elastic bounds on the slacks associated with linearized nonlinear constraints. 

SQOPT then solves each with v and w implemented implicitly. 

 

 Separately, SNOPT can use SQOPT to find a point close to a user-provided starting point 

x0. One option is to set for the nonlinear variables and specify that those 

bounds are elastic. (Linear variables retain their true bounds.) SQOPT will then solve the 

\proximal point problem" 

 

 

 

 Similarly, SNOPT's PP2 option asks SQOPT to minimize subject to the linear 

constraints and true bounds. Further details about SNOPT and SQOPT are given in [6, 7, 8]. 

 

Limited-Memory Hessian Updates 

 

 For moderate-sized problems, SNOPT maintains a dense Hessian approximation similar to 

that in NPSOL. For large problems with thousands of nonlinear variables, a limited-memory 

procedure is used to represent  
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 At certain iterations k = r, say, a positive-definite diagonal estimate  is used. In 

particular, R0 is a multiple of the identity. Up to  quasi-Newton updates  are 

accumulated to represent the Hessian as 

 

. 

 

 SQOPT accesses Hk by requesting products of the form . The work and storage 

required grows linearly with k-r. When , the diagonals of Rk are computed 

and saved to form the next Rr. Storage is then "reset" by discarding the vectors . 

 

 More elaborate limited-memory methods are known; notably [13, 2]. The simple form 

above has an advantage for problems with purely linear constraints: the reduced Hessian required 

by the Reduced-Gradient implementation in SQOPT can be updated between major iterations. 

This is important on large problems with many superbasic variables. As the SQP iterations 

converge, very few minor iterations are needed to solve QPk and the cost becomes dominated by 

the formation of  and its factors, but when the constraints are linear, this expense is 

avoided. (The LU factors of the basis can also be retained.) 

 

 Recently, the thesis research of Andrew Bradley [1] has led to a new limited- memory 

quasi-Newton implementation for SNOPT7 and SNOPT8. A circular bu_er is used to hold the 

latest pairs of update vectors  (recording the recent changes in x and the gradient of the 
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Lagrangian), and the initial diagonal Hes-sian approximation H0 is continually updated. The 

resulting LMCBD procedure (limited-memory circular buffer with diagonal update) produces a 

robust Hessian approximation   that  on  average  outperforms SNOPT's  current   limited-memory 

implementation. 

 

Quasi-Newton and CG 

 

 To avoid forming and factorizing the reduced Hessian in all cases, a quasi-Newton version 

of SQOPT has been implemented. It maintains analogous to the RG method in 

MINOS. 

 

 A further option is to use the Conjugate-Gradient method to solve the reduced- Hessian 

system . This seems to converge in remarkably few iterations even when  

there  are  many  thousands of superbasic variables. The "diagonal plus low-rank" structure of Hk 

plus the large identity matrix in Z must be largely responsible, but it would be easier to explain if 

the diagonal part  were always the identity. 

 

Future QP Solvers 

 

 Hanh Huynh's thesis research [12] includes the development of a convex QP solver QPBLU 

that periodically factorizes the current KKT matrix 
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and uses block-LU updates to accommodate 50 or 100 active-set changes to W as well as BFGS 

updates to H0. The aim is to handle many degrees of freedom with a direct method rather than the 

CG option above (allowing W to be large with many more columns than rows). 

 

 QPBLU is implemented in Fortran 95 and is designed to use any available sparse solver to 

factorize the current K0 . Currently it includes interfaces to LUSOL [10], MA57 [4], PARDISO 

[15], SuperLU [3], and UMFPACK [16]. Such solvers are assumed to give a factorization K0 = 

LU and to permit separate solves with L, L
T
, U, 

and U
T
. For example, MA57's symmetric factorization K0 = LDL

T
 is regarded as 

 

 

 K0 = L(DL
T
 ). At the time, PARDISO did not separate its factors, so QPBLU uses "L" = I 

and "U" = K0. 

 

 This work has been continued by Chris Maes for his thesis research [14]. A new QP solver 

QPBLUR has been developed, with modules from QPBLU serving as a valuable starting point. 

QPBLUR uses a BCL method to solve a sequence of regularized convex QP subproblems (in 

order to solve the given convex QP). It has been incorporated into SNOPT7 as an alternative to 

SQOPT. 
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 QPBLUR's block-LU updates are the main hope for making use of the most advanced 

(possibly parallel) linear system solvers within an active-set QP solver and hence within an SQP 

algorithm. In May 2010, Chris installed a more recent version of PARDISO that allows separate 

solves with L and U and optionally uses multiple CPUs during its Factor phase. 

 

 SNOPT will continue to use SQOPT while the number of superbasic variables remains 

below 2000 (say), then switch to QPBLUR if necessary. With its warm-start capability, QPBLUR 

will bridge the gap between null-space active-set methods and full-space interior methods. 
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