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ABSTRACT:

Here we consider sequential quadratic programming methods (SQP methods) for the

general optimization problem

NCB minimize ¢@(x)
reR™

subject to c(z) =0, {<r < u.

As with the BCL and LCL approaches, SQP methods use a sequence of subproblems
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to _nd estimates (“#: ¥k) that reduce certain augmented Lagrangians. An important function of

the subproblems is to estimate which inequalities in £ = @ = u gre active. Rather many

iterations (called minor iterations) may be needed to solve each subproblem.

In BCL and LCL methods, the subproblem objective is the current augmented Lagrangian,
which must be evaluated each minor iteration. In MINOS, for example, the Reduced-Gradient
method that solves the LCL subproblems requires an average of 2 or 3 evaluations of the functions
and gradients per minor iteration. This is acceptable if the function and gradient evaluations are
cheap (as they are in the GAMS and AMPL environments) but may be prohibitive in other
applications. For example, shape optimization in aerospace design requires the solution of a partial

differential equation each time _(x) and c(x) are evaluated.

SQP methods economize by using quadratic programming (QP) subproblems to estimate
the set of active constraints. Again, many minor iterations may be needed to solve the

subproblems, but the functions and gradients are not being evaluated during that process.

An NPSOL Application

NPSOL [9] is a successful \dense™ SQP implementation. It has found wide use within the
NAG Library and has proved remarkably robust and efficient on highly nonlinear optimization

problems, particularly within the aerospace industry.
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For interest, the largest application we know of was a trajectory optimization at McDonnell
Douglas Space Systems involving about 2000 variables and constraints, computing controls for
the last breath-taking seconds of fiight of the DC-Y, a pro- posed SSTO (Single-Stage-To-Orbit)
manned spacecraft. The aim was to minimize the fuel needed as the rocket, descending nose-first
to Earth, rotated from an alti- tude of 2800 feet just in time to land on its tail. NPSOL's solution
showed that the landing maneuver could be accomplished using half the fuel estimated by

classical techniques.

A second optimization was used to determine when the rotation should begin. With an extra
constraint limiting acceleration to 3g (since a human crew would be aboard), the optimal rotation
altitude proved to be only 1400 feet|the height of the Empire State Building. Such touchdowns
would be far more abrupt and astonishing than the Apollo moon landings. (More like the Lunar

Excursion Module's take-off from the moon played in reverse!)

Quadratic Approximations in a Subspace

Linearized constraints are a key component of SQP methods, just as they are for LCL

methods. They define a subspace in which it is reasonable to form a quadratic approximation to

the augmented Lagrangian. Let (T%+Yk) pe the current solution estimate and Pk be the current

penalty parameter. Also define T = J(xk) | The following functions are needed:
Linear approximation to ¢(x): ~ “&{%) = c(zg) + Jilz — zk).

. dp(r) = elx) — cplx).
Departure from linearity: A (T) clx) — cglz)
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Modified augmented Lagrangian:

My(z) = rﬁ(' )— yide(z) + pr Hdk[? )12,

VM,(z) = {J x) — J yﬁ(r)

V2My(z) = HD(..J—E[ w(@)Hi(w) + p(T(2) = Ji) (T(x) = Jy),
Uklz) = yr — pedi(z).

The last four expressions simplify greatly when = Tk, In particular, @x(2x) =0,

UelTk) = Yk- and terms involving J(x) and Pk vanish:

o

M. (xy, Oy ),
VMp(rg) = golzr),
V2My(zx) = Hol(zr) — 3, (ye)iHi(xk).

With AT = T — Tk, the quadratic approximation to M(x) at xk on the subspace

k() = Ujs therefore

Qr(x) = d(zx) + go(zk) Az + LAZT VA My (2) Az,

where the quadratic term may or may not be available.

www.ignitedminds.co.in




[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY
VOL. & ISSUE - 1] BEIIEVETaAMwio)]

ISSN-2230-9659

NPSOL

Recall that the MINOS subproblem takes the form

LCy miniﬁlizc Mp(z) = o¢(x) — g;faf,p[;?f] + %I{_}k”d;‘- {m}”z
rclkn
subject to cp(z) =0, <2 < .

The stabilized LCL method adapts early subproblems judiciously to ensure global

(x5 y1)

convergence, but ultimately the subproblems become LCk and their solutions converge

rapidly, as predicted by Robinson (1972).

The SQP methods in NPSOL and SNOPT are based on the same subproblem, but with the

objective My (x) replaced by a quadratic approximation Qr(z).

QP Illiigﬁ}!iZC Qnlx) = &) + golxp)TAx + %i\mTHL-im
subject to c(x) =0, (<< u,
V2 My (z)

where Hy is a quasi-Newton approximation to . To achieve global con- vergence, QPy

is regarded as providing a search direction (Ax, Ay) along which the augmented Lagrangian may

be reduced (as a function of both primal and dual variables).
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Note that the true Hessian of My(x) is zero in rows and columns associated with linear
variables. In NPSOL, slack variables are therefore excluded from H,, and in SNOPT both slacks

and other linear variables in x are excluded. The quasi-Newton Hessian approximations are
therefore of the form,

where Hx is positive definite. The positive-definiteness provides an intrinsic bound on the
relevant parts of Az, improving the validity of the quadratic model.

NPSOL's Merit Function

Let (-'?-'I-- ?Jf-] be the primal and dual solution to QP,. NPSOL forms the search direction

and seeks a steplength <« such that moving to the point (zp + alz, yp + aly)

(where 0 << a < 1) produces a sufficient decrease in the augmented Lagrangian

- www.ignitedminds.co.in




[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY
VOL. & ISSUE - 1] BEIIEVETaAMwio)]

ISSN-2230-9659

L(z,y. pr) = ¢(z) —yle(z) + %ﬂ;,-”rf{;tr]”z.

Initially % = 0 Later, Pk is increased if necessary to ensure descent for the merit

function. It may also be decreased a limited number of times, because a _nite (unknown) value is

always adequate for well defined problems, and because #* = U becomes acceptable within some

neighborhood of a solution to NCB.

The global convergence properties of NPSOL's linesearch strategy are described in [11].

The QP subproblems are assumed to be feasible (and to be solved accurately).

Hessian Updates

; I — pT ) 1 :
A dense triangular factorization Hy, = R, Ry s maintained in NPSOL. After the
linesearch, a BFGS update of the form

Ry1 = QR (I + -r;..ef], )y orthogonal

IS made to improve the quality of the Hessian approximation within some space. Various choices

are possible for the vectors r, and s¢. They reect the change in x and the change in gradient of

some modified Lagrangian Mi(2, k415 Pr+1) defined

with the latest estimate of y (but Fk+1 = Uwhere possible).
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LSSOL

NPSOL uses the least-squares solver LSSOL [5] for the subproblems QP,. LSSOL deals

directly with the triangular factor Ry. It is virtually unique in avoiding the squared condition

T
number that most solvers would fall prey to with Hessians of the form Ry Ry,

SNOPT

The reliability of NPSOL and LSSOL allowed them to be applied to increasingly large
problems (particularly at McDonnell Douglas). However, LSSOL uses orthogonal transformations
of J(xx) to solve the QP subproblems, and as problem size increases the total cost becomes

dominated by the associated linear algebra.

To a large extent, SNOPT is a sparse SQP implementation that combines the virtues of
MINOS and NPSOL. Sparse Jacobians are handled as in the Reduced- Gradient method (using
LUSOL to maintain a sparse basis factorization), and the same merit function as in NPSOL

ensures global convergence.

The primary innovation is a method for treating the QP Hessian in sparse form. Also,

infeasible problems NCB are dealt with more methodically by including an 4 penalty term

within the problem definition (where e is a vector of ones):

The QP Subproblem

The SNOPT subproblems include the by penalty terms verbatim:
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QP,.(7) minimize ¢(xy) + go(zp) Az + %&;rrTH;‘..ﬂ.;r + vel (v 4 w)

o, uw
subject to cp(z)+v—w=0, f<zx<wu v.w=0.

.. - Lo o andy- oy _
Initially ¥ = O:, but it is set to V¢ = 10°(1 + [lgo(zr)[)) if QPx(0) proves to be

infeasible or if the norm of the dual variables for QP%(0) becomes larger than k-

Optimization continues with that value of until an optimal solution of NCB() has been

obtained. If the nonlinear constraints are not satisfied (“(Z) # Ui 7 s increased and
optimization continues. If reaches an allowable maximum value and the nonlinear constraints are

still violated, the problem is declared infeasible. At this stage, SNOPT has essentially minimized

le(@)la,

SQOPT

SNOPT includes a sparse QP solver, SQOPT, which employs a two-phase active set
algorithm to achieve feasibility and optimality. SQOPT implements elastic programming
implicitly. Any specified bounds on the variables or constraints may be elastic. The associated
variables or slacks are given a piecewise linear objective function that penalizes values outside the

\real" bounds.
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if 7>0 jn NCB(y) (perhaps because previous QP subproblems were infeasible),

SNOPT defines elastic bounds on the slacks associated with linearized nonlinear constraints.

SQOPT then solves each QP&(7) with v and w implemented implicitly.

Separately, SNOPT can use SQOPT to find a point close to a user-provided starting point

Xo. One option is to set 5 = u; = (20)j for the nonlinear variables and specify that those
bounds are elastic. (Linear variables retain their true bounds.) SQOPT will then solve the

\proximal point problem”

PP1 inimiz Tr—
1111;2&}!150 |2 — 201

subject to the linear constraints and (modified) bounds.

TP
Similarly, SNOPT's PP2 option asks SQOPT to minimize 3llw — woll3 subject to the linear
constraints and true bounds. Further details about SNOPT and SQOPT are given in [6, 7, 8].

Limited-Memory Hessian Updates

For moderate-sized problems, SNOPT maintains a dense Hessian approximation similar to

that in NPSOL. For large problems with thousands of nonlinear variables, a limited-memory

procedure is used to represent Hy.
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At certain iterations k = r, say, a positive-definite diagonal estimate Is used. In

particular, RO is a multiple of the identity. Up to ¢ quasi-Newton updates (default £=10) 5pq

accumulated to represent the Hessian as

SQOPT accesses Hy by requesting products of the form Hrv The work and storage

required grows linearly with k-r. When =1+t the diagonals of Ry are computed

and saved to form the next R,. Storage is then "reset" by discarding the vectors {5, ; }.

More elaborate limited-memory methods are known; notably [13, 2]. The simple form
above has an advantage for problems with purely linear constraints: the reduced Hessian required
by the Reduced-Gradient implementation in SQOPT can be updated between major iterations.
This is important on large problems with many superbasic variables. As the SQP iterations

converge, very few minor iterations are needed to solve QP and the cost becomes dominated by

: T : . : : :
the formation of £ HrZ and its factors, but when the constraints are linear, this expense is

avoided. (The LU factors of the basis can also be retained.)

Recently, the thesis research of Andrew Bradley [1] has led to a new limited- memory
quasi-Newton implementation for SNOPT7 and SNOPT8. A circular bu_er is used to hold the

latest pairs of update vectors 185, U5 (recording the recent changes in x and the gradient of the
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Lagrangian), and the initial diagonal Hes-sian approximation HO is continually updated. The
resulting LMCBD procedure (limited-memory circular buffer with diagonal update) produces a
robust Hessian approximation that on average outperforms SNOPT's current limited-memory

implementation.

Quasi-Newton and CG

To avoid forming and factorizing the reduced Hessian in all cases, a quasi-Newton version

Tp ~. 7T
of SQOPT has been implemented. It maintains R'R =~ Z HyZ

MINOS.

analogous to the RG method in

A further option is to use the Conjugate-Gradient method to solve the reduced- Hessian

T / T : : .
system £ HrZArs = —Z° g This seems to converge in remarkably few iterations even when
there are many thousands of superbasic variables. The "diagonal plus low-rank™ structure of Hy

plus the large identity matrix in Z must be largely responsible, but it would be easier to explain if

2
the diagonal partH r = R were always the identity.

Future QP Solvers

Hanh Huynh's thesis research [12] includes the development of a convex QP solver QPBLU

that periodically factorizes the current KKT matrix
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Hy wt .
Ky = (I{E ) : Hy diagonal

and uses block-LU updates to accommodate 50 or 100 active-set changes to W as well as BFGS
updates to Hy. The aim is to handle many degrees of freedom with a direct method rather than the

CG option above (allowing W to be large with many more columns than rows).

QPBLU is implemented in Fortran 95 and is designed to use any available sparse solver to
factorize the current K, . Currently it includes interfaces to LUSOL [10], MA57 [4], PARDISO
[15], SuperLU [3], and UMFPACK [16]. Such solvers are assumed to give a factorization Ky =

LU and to permit separate solves with L, L', U,

and U™. For example, MA57's symmetric factorization KO = LDL is regarded as

Ko = L(DLT). At the time, PARDISO did not separate its factors, so QPBLU uses "L" =
and "U" = K.

This work has been continued by Chris Maes for his thesis research [14]. A new QP solver
QPBLUR has been developed, with modules from QPBLU serving as a valuable starting point.
QPBLUR uses a BCL method to solve a sequence of regularized convex QP subproblems (in
order to solve the given convex QP). It has been incorporated into SNOPT7 as an alternative to
SQOPT.
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QPBLUR's block-LU updates are the main hope for making use of the most advanced
(possibly parallel) linear system solvers within an active-set QP solver and hence within an SQP
algorithm. In May 2010, Chris installed a more recent version of PARDISO that allows separate

solves with L and U and optionally uses multiple CPUs during its Factor phase.

SNOPT will continue to use SQOPT while the number of superbasic variables remains
below 2000 (say), then switch to QPBLUR if necessary. With its warm-start capability, QPBLUR

will bridge the gap between null-space active-set methods and full-space interior methods.
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