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ABSTRACT

d-1_

For a monic polynomial with integer coefficients x! —ax®™ — - —a,.the sum Sk of the kth powers

of the zeros is an integer, for positive integer k. For prime p, Sp=a (mod p); and hence, if ax - 0
then P15 £a: =%l then similar congruences hold for sums of negative powers of the zeros.

Illustrations are given for various types of Chebyshev polynomials with integer argument.
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SYMMETRIC FUNCTIONS OF ROOTS

Consider the monic polynomial equation with complex (or real) coefficients

x'—ad —ax"t - —a, =0 (1)

The roots of equation (1) will be denoted by @ 5.7, ¥.@. and those symmetric functions of the

roots that are called sigma functions will be denoted thus:

- lef
SaZa+frotw,

Zaﬁdgaﬂ+a:y+-~+aw+ﬁy+~--+ﬂw+---+w¢fu,

def 2
Yt rayt vt + Y+ Pt e’ (2)

: 2
+pat +yiat v r@idt Y 0’ 0y

el celera,

The sigma functions @ 2af, Lafy,...Laby..@ gre called the elementary symmetric functions

a, By, @, and Vieta's Rule expresses them in terms of the coefficients of the polynomial (1):

Xa=a, Xoffi=-a,, Xafy =a,
L Xafy..o=afy..o=(-1)""a,.
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Each symmetric polynomial with integer coefficients can be expressed as a polynomial in the

elementary symmetric functions, with integer coefficients ([1], p. 67).

Therefore, if all coefficients #---»“ of the monic polynomial (1) are integers (positive, negative,
or zero), each symmetric polynomial [in the roots of (1)] with integer coefficients has integer

value. In particular, each sigma function then has integer value.

For integer k, denote the sum of the k™ powers of the roots as

def E

5, Ya* =a" +p" +- +0", (4)

S8y,

which is a sigma function if k> 0. The initial values Jdmay be computed successively by

Newton's Rule:

JSrj: =alSJ.¢_! + ﬂgﬁlrk_j g v e o l:n'k_alnq'i‘:._ + ﬂk_;S1 +k 'ﬂ'k (k - ].:I 2, . d}, (5)

and for A: > <i, Newton's Rule becomes the recurrence relation

|_E|:|‘:_ —= Ifflélrk_-l 1 ul._ﬂ_l = v n o} H(!LSI’-.._:JI (;f = {Jr'i' ].,d"' Ejd 1‘3, }, (Ef}
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by which Sa+1s Sas2: Sa43: - may be computed successively.

If the coefficients “i: -9 are integers, then Sy has integer value for all positive integers k, by the
general result cited above for symmetric polynomials with integer coefficients. But for the Sy, it is
simpler to note [from (5)] that 51 = and the result then follows from (5) and (6) by induction on

K.

From Newton's Rule, the sums of powers of roots can be expressed in terms of the coefficients of

the monic polynomial (1). For example,

S=a, S,=a+2a,, S=qa +3aqa+a),

S, = a} +4aia, +daa, +2a; +4a,,

Ss = a; +5a'a, +ala, +aal +a,) + aa, +as),

S, = al +6aja, +6a’a, +al(9a2 +6a,) +a,(12a,a, + 6a,) (7)

3 a?
F2a; +18a,a, + 3a;y + 6a,,

- 7 s : 7
S5 =y + Naja, + {r;'u_? . -r:f {2(:5 +cty ) +ay (Saay +as)

3. 2 e PR
Fay(ay + 2a,a, +ay +ag) + ayd, + ayis + aga, +ay),

where a, is taken as 0ifj =d.

Waring's formula (of 1762) expresses Sy explicitly ([1], p. 72) in terms of the coefficients of the

monic polynomial (1):
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~aj'ay ...ay, (8)

where the sum extends over all sets of nonnegative integers "-"2:---"for which

H+2rn 43+ +dr, =k (9)

The expressions (7) for St suggest that S, has some interesting divisibility properties for

prime K.

DIVISIBILITY OF SUMS OF PRIME

POWERS OF ROOTS

Hereinafter, the polynomial coefficients -4 are taken to be integers, except where otherwise

stated.

Theorem 1: For all primes p, S, = ax (mod p).

Proof: If all roots are integers, then by Fermat's Little Theorem,
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S,=a’+p"++w’ =a+f++a=a (modp) (10)

In the general case, when the roots are algebraic numbers, expand Sy by the Multinomial

Theorem:

S =(a+f+y+- o)
s (11)

where at least two of the indices 4. 7. --- ¥ are positive integers, and the others equal zero. This

may be rewritten as:

d=sr T —E_saipy o 12

Each multinomial coefficient is an integer; hence, the denominator ¢!*!s'... vl divides the

numerator X! =&k =1D! Every factor in the denominator is strictly less than k, and hence, if k is
prime the denominator and k are coprime, so the denominator must then divide the other factor (k
-1)! in the numerator. Therefore, if k is prime then each such multinomial coefficient is an integer

multiple of k.
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But we have seen that, if all coefficients “1---“+ are integers, then each of the sigma functions in

(12) has integer value. Thus, if k is any prime/?, then it follows from (12) that

af =8, +pF, (13)

o

where Fy is an integer* which depends on/? (and also “1-“2+--»“4), Therefore

Sp=af =a; (mod p), (14)

by Fermat's Little Theorem.

Corollary 1.1: If p is prime, then 7!5, < Pla.

Corollary 1.2: If a; - 1, then S, is not a multiple of p for any prime p.

Corollary 1.3: If a; - +q°, where g is prime and ¢~ L then q is the only prime p for which Pl
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It was shown above that, if k is prime, then each such multinomial coefficient is an integer
multiple of k. However, the converse does not hold. For example, &!/(1)*=k(k-1! for all

k=2, kIO D =k x((k=1)(k-2) .. 3 forall k¥=3;8/(21)* =8x(7x5%3%), and so on.
Theorem 2: S, is an integer multiple of p for all primes p, if and only if a; - 0.
Proof: If a; - 0, then equation (13) reduces to S = ~PFs.and hence 715+~

If 215 then (by Theorem 1, Corollary 1), P'”land, if this holds for infinitely many primes I, then

a;-0.¢

The converse does not hold, since examples exist with *|5: where k is composite. For example

(see [2]), take d =3 with roots 1, 1, -2 (with Za =g, =0), for which the characteristic

polynomial is (¥~ 1D*(x+2)=x*=3x+2 and S, =2+(-2)". | this case, S = 66 so that ©/5s: and 6 is

composite.
Lemma: If @2 =*1, then S, has integer values for all integers k—positive, zero, and negative.

.. L - _ d-1
Proof: For general complex coefficients @ da, if @3 #0, then affy ..o =(=1)""as #0, 50 that no

root equals O; hence, SO exists:
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The monic polynomial equation inverse to (1),

Ay a1, iy a2 &1 _ 4 (16)

by Newton's Rule from the coefficients in (16), similarly to (5) and (6).

If all coefficients -9 in (1) are integers and @: =*l.then all coefficients of the monic

polynomial (16) are integers. It follows as in (5) and (6) that Sk has integer value for all integers

k<-1. Combining these results with the previous result for ¥ =1.we get that ¢ has integer

value for all integers k. *

Theorem 3: If p is prime,

Sp=-ay, (modp)ifa; =1,and §_ =a;  (modp)ifa; =-1.

Proof: Apply Theorem 1 to the inverse polynomial equation (13), which is now
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:".+ad_lz"'1+nd_zza_3+---+ulz—l:{] fa, =+1, a7
o o - d-2 . o
2 —a, a2 —az+1=0 ifa;=-1

Note that this result holds for a more general polynomial with integer coefficients, with leading
term -aox” rather than x“ as in (1).

Corollary 3.1: 1f a; = +1 and p is prime, then p|S_, < play ;.
Corollary 3.2: Ifa; =+1 and a,_, = +1, then §_, is not a multiple of p for any prime p.
Corollary 3.3: If a, =1 and a, = +1 and a,_, = 1, then, for all primes p, p{§, and p|S_,.

Corollary 3.4 If a; =+1 and a;_ , = +q", where ¢ is prime and f = 1, then g is the only prime p
for which p[S_ .

Corollary 3.5: 1f a, =+1 and a, = +¢° and a,_, = +q' , where ¢ is prime and ¢>1 and £ =1,
then g is the only prime p for which p|5,, and also g is the only prime p for which p|S_ .

Corollary 3.6: If a, = £1, then there is no prime p that divides both S, and §_, if and only if a,
and a,_, are coprime.

Corollary 3.7: 1f a, = +1 and if @, and a,_, have the same set of prime divisors and if p is prime,
then p|§, < pla, < pla, , < p|S_ .

Note that a; and aq.; may have different signs, and they may have different exponents for their
prime factors.

Theorem 4: If % =1, then “-7 isan integer multiple ofp for all primes p if and only if %1~

Proof: Apply Theorem 2 to the inverse polynomial (17). D
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Theorem 5: For all polynomial equations of the form
=3

d d-2 - 3 20
X =y A x T a7~y ax" 2 1=0, (18)

with integer coefficients, both Sp and S_p are integer multiples ofp for all primes p.

. S
Proof: By Theorem 2 /°# since a, = 0, and by Theorem 4, P since

a, =+l and @-1=0.

APPLICATION TO CHEBYSHEV POLYNOMIALS

The Chebyshev polynomials of the first kind are defined by the initial values:

LS, To)Ey, (19)

with the recurrence relation
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L =2yT_,(»)-T,,0), (n=2,3,..) (20)

In terms of the modified Chebyshev polynomial of the first kind,

C, {z)"i‘ﬂ;(%} @1
the initial values are
C() T2, C(z)E 2 (22)
and the recurrence relation is
Ci(2)=12C, 4(2)-C,4(2), (n=2,3,..) (23)
The characteristic polynomial for T,(y) is
P(x)=x" -2xy +1. (24)
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In terms of the roots of the characteristic equation,

a=y+/yi -1, B=y—y' -1, (25)

(22) becomes

C,(2y)=2=a"+A°=8,, C2y)=2y=a+f=S5, (26)

and it follows from (23) by induction on n that

C.2y=20(n=a"+f" =5, (k=012,.) (27)

_j-.--,_ﬂs{zj-ri}

Theorem 6: For integer j , T,(J) =j (mod p) for all odd primes p, and 27, (mod p)

for all primes p.

Proof: if m = 2y is any integer, then it follows from (22) and (23) by induction on n that

S = Ce(m) =27 (3) is an integer for all integers k20,and Theorem 1 shows that, for every

prime/?,
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z:rp[EJ =8, =m (mod p). (28)
Therefore, if y=j is any integer and p is prime,
27,(j)=2j (mod p), (29)
and hence, for every integer y and every odd prime p,
T.(j)=j (mod p). (30)
Forp = 2,
L)y=2j-1, (31)

so that (30) holds only for odd j

If 2y = m = 2j +1 is odd, then, for every prime p, (28) becomes
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2?;[j+%]s (2j+1) (mod p) 32)

for all integers j

2Tp\J + -j = (2j + 1) (modp) (32)

Theorem 7: For odd prime p, L,(=Jj (mod jp) for all integers j except multiples of p, and if/ s
odd (and not a multiple of p) then T (J) =) (mod 2jp).

Proof: For integer j and odd prime p,
T,(j)=j+ep, (33)

where e is an integer, in view of Theorem 6.

_! n

From the initial values (19), it follows from (20) by induction on n that LO=2")Y"-" s a
polynomial in y of degree p with integer coefficients, and that T.{y) is an even polynomial iny if n
is even and T,(y) is an odd polynomial y if nis odd. Hence, if j is an integer and n is odd, then

JIT.()- Thus, for all odd primes p,
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Jrep=T,(j)=jb (34)

for some integer b.

If j is an even integer then jbA is even; and hence ep is even, so that e = 2f for some integer f

If j is an odd integer then To(J) and Ty(J) are odd [from (19)], and it follows from (20) by
induction on n that T,(J) is odd for all n > 0. Thus, bothy and T (J) in (33) are odd; hence, ep is

even, so that e = 2f.

Therefore, for all integers j and odd prime p,

J+2fp=T,(j)= jb, (35)

so that, if j' is not a multiple of p, then /I(2/) and if j' is also odd then 7!/,

Theorem 8: For prime #=5and odd integer ™ 21,(%)=m (mod 2p), and if w is not a multiple of p

27, (2)=m (mod 2mp).

then
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Proof : From (22) we get Co(m) = 2, which is even, and C;{m) = m, which is odd; and from (23)

we get C,(m) = m? - 2, which is odd. It follows from (23), by induction on n, that C,(m) is even if

and only if 3/"- From (31),

C,(m) - :?f;{%) = m+ep, (36)

where e is an integer; hence, for all primes ## 3 we must have ep even. Thus, for all odd integers

m and for all primes =3, e must be even e = 2f; therefore,

A m . _
ZTP[—?'-]:nHQﬁ)Em(mod.’lp) (p=5) (37)

From the initial values (19), it follows from (23) by induction on n that €+(2)=2" =" is amonk
polynomial in z of degree n with integer coefficients, and that C, (z) is an even polynomial in z if

n is even and C.{z) is an odd polynomial in z if n is odd. Hence, if j is an integer and n is odd, then

TG 50 that for all odd primes p,

Co() = jb, (38)

where b is an integer, and if/ = m is an odd integer and 7 = then
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m+2fp= {’,.'F{m}:mh, (39)

Therefore, if m is not a multiple of p, then /(2/).and since m is odd then 1./ so that

C,(m) =21, E] =m (mod2mp). [ (40).
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