

A Study of Some Important Theorem on Fuzzy Linear Space

Dr. P.K. Mishra¹, Dr. K.K. Jain², Dr. Yogesh Sharma³, Rahul Deo Awasthi⁴

¹Department of Mathematics Asst. Prof., Govt. Maharaja Collage Chhatarpur M.P. India

²Asst. Prof., PGV College, Gwalior, M.P. India

³Prof. & Head, Mathematics Dept., Jodhpur National University, Rajasthan, India

⁴Research Scholar Jodhpur National University, Rajasthan, India

Abstract:- In this paper we introduced the proof of some new theorem on fuzzy linear space.

Key Words:- Fuzzy set, fuzzy linear space.

INTRODUCTION - 1.1

Let S be a nonempty set. Then a characteristic function μ : $S \rightarrow [0,1]$ is called a fuzzy set of S. Let X be a field and be a fuzzy field in X with characteristic function μ_F . Let Y be a linear space over the fuzzy field F and V is a fuzzy subset of Y with characteristic function μ_V . Then V is called a fuzzy linear space in Y if and only if, it satisfied the following condition.

$$(i) \mu_V(x+y) \geq \min\{\mu_V(x), \mu_V(y)\} \text{ for all } x, y \in Y$$

$$(ii) \mu_V(\lambda x) \geq \min\{\mu_V(\lambda), \mu_V(x)\} \text{ for all } \lambda \in F \text{ and } x \in Y$$

$$(iii) \mu_V(0) = 1$$

THEOREM – 1.2

Let us suppose that Y and Z be vector space (linear space) over a field F in a field X and f be liner transformation from Y in to Z and W be a fuzzy linear space in Z, then the

inverse image of W that is $f^{-1}(W)$ be a fuzzy linear space in Y.

PROOF:-

Let us assume that Y and Z be two vector space over a fuzzy field F in a field X. Again we assume that f be a linear transformation of Y into Z. Let us suppose $\lambda, \mu \in X$ and $a, b \in Y$. Then we take from the Properties of linear transformation that

$$f(x+y) = f(x) + (y)$$

and

$$f(\lambda x) = \lambda f(x)$$

Again assume that w, be a fuzzy linear space in Z and $f^{-1}(W)$ be the inverse image of W in Y

Then we prove that $f^{-1}(W)$ be a fuzzy linear space in Y for all $x, y \in Y$ and $\lambda, \mu \in X$

Then

$$\mu_{f^{-1}(W)}(\lambda x + \mu y) = \mu_W[f\{\lambda(x) + \mu y\}]$$

$$\begin{aligned}
&= \mu_w \{ \lambda f(x) + \mu f(y) \} \\
&\geq \min \{ \min \{ \mu_F(\lambda), \mu_w f(x) \}, \min \{ \mu_F(\mu), \mu_w f(y) \} \} \\
&= \min \{ \min \{ \mu_F(\square \square \square), \mu_{f^{-1}(W)}(x) \}, \min \{ \mu_F(\mu) \square \\
&\quad \mu_{f^{-1}(W)}(y) \} \}
\end{aligned}$$

Hence

$$\mu_{f^{-1}(W)}(\lambda x + \mu y) \leq \min\{\min\{\mu_F(x), \mu_{f^{-1}(W)}(x)\}, \min\{\mu_F(\mu), \mu_{f^{-1}(W)}(y)\}\}$$

Thus it is clear that $\mu_{f^{-1}(W)}$ the inverse image of W in A is a fuzzy linear spaces in Y .

THEOREM - 1.3

If V be a fuzzy linear space in a linear spaces Y over an

ordinary filed F in X , then $\mu_V(\square x) = \mu_V(x)$, for every $x \square Y$ and for all $o \square \square \square X$.

PROOF:-

Let us suppose that V be a fuzzy linear space in a linear space Y over an ordinary field F in X .

Then for all $x \in Y$, we take

$$\mu_v(\square x) \square \square \mu_v(x) \square$$

□ i)

Now for all $\square\square\square\square\square F$ and all $x\square Y$

Then we have

Thus From (I) And (II), We Get

$\mu_V(\square X) = \mu_V(X)$ FOR EVERY OPEN SET X
AND $X \subseteq Y$.

REFERENCES:-

- (1) Zadeh, L.A., Fuzzy Sets, Inform and Control 8 (1965) 338-353.
- (2) Nanda, S., Fuzzy Fields and Fuzzy Linear Spaces, Fuzzy Sets and System 19 (1986) 89-84.
- (3) Biswas, R., Fuzzy Fields and Fuzzy Linear Spaces Redefined Fuzzy Sets and System 33 (1989) 257-259.