

## Modularity Proof without Ihara's Lemma



**Anuj Kumar Singh**

Research Scholar, Jodhpur National University, Jodhpur, INDIA

**Dr. K. K. Jain**

Asst. Prof., Maths Dept., PGV College, Gwalior, INDIA

**Dr. Yogesh Sharma**

Prof. & Head, Mathematics Dept., Jodhpur National University, Rajasthan, India

# GNITED MINDS

ABSTRACT

Journals

The title is "Proving modularity without Ihara's lemma", which is the subject of the preprint. "A family of Calabi-Yau varieties and the Sato-Tate conjecture".

The aim of research paper is to generalize the modularity lifting theorems of higher dimensional Galois representations.

Recall the works of [4], [5]. Let

be a irreducible, 2-dimensional mod 1 Galois representation, unramified outside a

finite set of primes  $S$ . Assume that it is modular. Let

$$\rho : \text{Gal}(\bar{\mathbb{Q}}, \mathbb{Q}) \rightarrow \text{GL}_2(\mathbb{Z}_l)$$

be an  $l$ -adic lifting of  $\bar{\rho}$  (i.e.  $\rho \bmod l \cong \bar{\rho}$ ). One would like to prove that  $\rho$  is also modular. Here, the set of primes at which  $\rho$  ramifies may be larger than that of  $\bar{\rho}$ .

Wiles approached the problem through deformation theory: for each finite set of primes (which can be empty), there's a universal deformation ring  $R_\Sigma$  which parametrises the liftings of  $\bar{\rho}$ , with prescribed ramifications outside the set  $\Sigma$  (these

representations are, in particular, unramified outside  $S \cup \Sigma$ ). On the other hand, one constructs a Hecke ring  $\mathbb{T}_\Sigma$ , which parametrises those which are modular. One would like to prove an isomorphism  $R_\Sigma \cong \mathbb{T}_\Sigma$ , which is a precise way of saying that all such liftings of  $R_\Sigma$  are modular.

## Introduction

Wiles discovered a numerical criterion for the two rings to be isomorphic: he constructed numerical invariants for both  $\mathbb{T}_\Sigma$ , the Galois side, and  $\mathbb{T}_\Sigma$ , the Hecke side. In [5] it is proved that these two invariants are equal iff  $R_\Sigma \cong \mathbb{T}_\Sigma$ .

In [4] (especially the appendix), Taylor and Wiles proved the isomorphism  $R_\emptyset \cong \mathbb{T}_\emptyset$  directly (i.e. without using the numerical criterion), hence the two numerical invariants are equal in the case  $\Sigma = \emptyset$ , called the minimal case. Their methods depend essentially on the assumption  $\Sigma = \emptyset$ .

By studying how the two numerical invariants change when one pass from a set of primes  $\Sigma$  to a larger set  $\Sigma'$ , one can show that the equality of the invariants in the case of  $\Sigma$  implies equality in the case of  $\Sigma'$ . This part of the argument is known as "level raising". Here, important use is made of the Ihara's lemma, which gives the relation between the Hecke side invariants for  $\Sigma$  and  $\Sigma'$ .

In the preprint [1] (but note that the results of this paper are known for many years), the aim of the authors is to generalize the modularity lifting arguments to certain n-dimensional mod  $l$  Galois representations, which arise from cuspidal automorphic representation of  $GL_n$ . They formulated a conjectural generalization of Ihara's lemma, which, if true, would allow most of the level raising arguments of Wiles to carry over (they were able to generalize the arguments of Taylor-Wiles unconditionally).

The next important development came with the work of Kisin [2]. He considered framed deformation problems, and that one could hope to prove modularity if the local deformation ring was only integral but not smooth (via modification of the Taylor-Wiles method when the local deformation ring is no longer a power series).

In the preprint [3], Taylor generalizes the methods of Kisin to the higher dimension case, and proves the main results of [1] unconditionally. The importance of these results cannot be overestimated. As one of the highlights, we now have a proof of the Sato-Tate conjecture for elliptic curves over totally real fields which are semistable at some prime, a conjecture which is not known even for a single example before.

## References

- [1] L.Clozel, M.Harris, and R.Taylor, Automorphy for some l-adic lifts of automorphic mod l Galois representations, preprint. (2005)
- [2] M.Kisin, Moduli of finite flat group schemes, and modularity, preprint. (2004)
- [3] R.Taylor, Automorphy for some l-adic lifts of automorphic mod l Galois representations II, preprint. (2006)
- [4] R.Taylor and A.Wiles, Ring theoretic properties of certain Hecke algebras, Ann. of Math. 141(1995).
- [5] A.Wiles, Modular elliptic curves and Fermat's Last Theorem, Ann. of Math. 141(1995).  
Department of Mathematics, Harvard University, 1 Oxford Street, Cambridge, MA 02138