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Abstract:
The coefficient space is a kind of resolution of singularities of the universal flat deformation space
for a given Galois representation of some local field. It parametrizes (in some sense) the finite flat
models for the Galois representation. The aim of this note is to determine the image of the

coefficient space in the universal deformation space.

1. Introduction

In the theory of deformations of Galois representations one is often interested in a subfunctor of

the universal deformation functor consisting of those deformations that satisfy certain extra
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conditions, so called deformation conditions (¢t [BMa, §23]) "|f we deal with a representation of the
absolute Galois group of a finite extension K of ® in a finite dimensional vector space in
characteristic p, there is the deformation condition of being flat, which means that there is a finite
flat group scheme over the ring of integers of K such that the given Galois representation is
isomorphic to the action of the Galois group on the generic fiber. The structure of the ring pro-
representing this deformation functor is of interest for modularity lifting theorems (see [Kil] for
example). To get more information about this structure, Kisin constructs some kind of "resolution
of singularities” of the spectrum of the flat deformation ring. This resolution is a scheme
parametrizing modules with additional structure that define possible extensions of the
representation to a finite flat group scheme over the ring of integers. In [PR2] Pappas and
Rapoport globalize Kisin’s construction and define a so called coefficient space parametrizing all

Kisin modules that give rise to the given representation.

Following the presentation in [PR2] we want to determine here the image of the coefficient space
in the universal deformation space. This question was raised by Pappas and Rapoport in [PR2,
4.c]. Further we show how to recover Kisin’s results from the more abstract setting in [PR2]. The
main result of this note is as follows. Let K be a finite extension of @ where p is an odd prime,
and 7:Gr — GLaF) be a continuous flat representation of the absolute Galois group
Gr = Gal(E/K) on some d-dimensional vector space over a finite field F of characteristic p. If
£:Gr — GLA(A) js a deformation of # we write Cx(£) for the coefficient space of (locally free)
Kisin modules over Spec A that are related to the flat models for the deformation £ (see also the

definition below).
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Theorem 1.1. Assume that the flat deformation functor of # is pro-representable by a complete
local noetherian ring &2 We write # : Gx — GL4(E for the universal flat deformation. Then the

morphism Cx{#} — Spec B Spec R is topologically surjective.

Corollary 1.2. If it exists, the flat deformation ring R is topologically flat, i.e. the generic fiber

SpecRﬂ{iz’Pl is dense in Spec®™. If the ramification index of the local field K over @» is smaller

than p-1, then this implies the following result, already contained in [PR2]

Corollary 1.3. Denote by e the ramification index of K over @-. Assume that the flat deformation

functor of 7 is pro-representable and that € < # — 1. Then E® is the scheme theoretic image of the

coefficient space.

2. Notations

Let p be an odd prime and K be a finite extension of & with ring of integers @, uniformizer
™ € Or and residue field ¥ = Ox/mCx. Denote by K, the maximal unramified extension of % in
K and by W = W(K) its ring of integers, the ring of Witt vectors with coefficients in k. Fix an
algebraic closure & of K and denote by &x = Gal{X/X]) the absolute Galois group of K. Further
we choose a compatible system - of #™-th roots of the uniformizer = in X and denote by e the

subfield U K{m.) of £+ We write Fk.. = Gal(X/Ka)for its absolute Galois group.

Letd > 0 be an integer and F a finite field of characteristic p. Let 7 ©x — GL4F] be a continuous

representation of GK and denote by P = #l&x.. the restriction of 7 *° Cx..-
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We consider the deformation functors = on local Artinian W(F)- algebras with

residue field F. For a local Artinian ring (A,m) we have

squivalance classes of p: Gy — GL4(4) such that
Dpld) =

g modm=a

squivalence classes of p: &g, — GL4(4) such that
D ld) = .

g mod m 4.,

where two lifts #1: f2are said to be equivalent if they are conjugate under some
§ € ker(GL4(4) - GLa(4/m)). The functor DF is the flat deformation functor (¢t [Ram]) je. the

subfunctor of ¥z consisting of all deformations that are (isomorphic to) the generic fiber of some

finite flat group scheme over Spec ©x. Here “isomorphic to" means isomorphic as

Z,|Cx |modules, 55 the action of the coefficients in the generic fiber does not need to extend to the

group scheme.
If D7 (resp- DE) gre pro-representable, the pro-representing ring will be denoted by £ (resp. A,

Recall that d > 0 denotes an integer and consider the following stacks on Zz-algebras, defined in
[PR2]. For a Zp-algebra R, write RW for LAY and

(resp. Rw|[o]]) for B®g, W((=)) (resp. £EBz, W[4}, where the competed tensor products are the

completions for the u-adic topology. Further we denote by # the endomorphism of Ew((#))that is

the identity on R, the Frobenius on W and that maps 1o =¥,
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We define an fpgc-stack R on the category of Zr-schemes such that for a Z»-algebra R the

groupoid R(R) is the groupoid of pairs (M.2) where M is an RW((u))- module that is fpgc-locally

on Spec R free of rank d as an RW((u))-module, and & is an isomorphism ¢*M — M,

Further we define a stack C as follows. The R-valued points are pairs (%i.®) where M is a locally
free Fiw [[u]l-moduleqgf rank d and (MHL/u]. ) € R(R), For m € Z consider the substacks Cm C € given

by pairs (P ®)satisfying

oI C (PN < ™I, (2.1)

| (M)

For h < Nwe write Cr.i for the substack of C consisting of al satisfying

B0 < S50 < 9.

Here E(u) € Wluljs the minimal polynomial of the uniformizer ™ € O« over K. In the following we
will only consider the case h = 1 and just write Cx for Cy.x. We will write Ci resp. R for the

restrictions of the stacks Ck (resp. R) to the category Nil, of Z»-schemes on which p is locally
nilpotent. See also [PR2, 82] for the definitions.

The motivations for these definitions are the following equivalences of categories
(see |Fo| and [Kil, §1]}.
Proposition 2.1. Let A be a local Artin ring with residue field F a finite field of characteristic p.

Then the category of Cx..-representations on free A-modules of rank d is equivalent to the

category of ¢ale ¢-modules over (A @z, W)((u)) that are free of rank d.

Theorem 2.2. Let p > 2. Then there is an equivalence between the groupoid of finite flat group
schemes ¢ over Spec “x and the groupoid of pairs (D1, @), where ™ is a W[u]]-module of

projective dimension 1 and ® : 9 — Mijs a ¢-linear map such that the cokernel of the linearisation

www.ignitedminds.co.in




[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY
o ]IEANI[SMIN February 1, 2011

ISSN-2230-9659

of © is killed by E(u). Under this equivalence the restriction of the Tate twist of the GK-

representation on 9(&)to Gk corresponds to the ¢ale @-module (M[1/u]. ®)

Further we will use the following notations: Let (A,m) be a complete noetherian W(F)-algebra and
¢ :8pf A — R be an A-valued point of . Write & for the reduction of ¢ medulo m™*. By [PR2,
Corollary 2.6; 3.b] the fiber product

Bpec{A/m™t ) wp O

is representable by a projective A/m™*'-scheme Cx(£:) that is a closed subscheme of some affine

Grassmannian over Spec(A/m™*1) forall » = 0. These schemes give rise to a formal scheme Cx (&)

over Spf A. Using the very ample line bundle on the affine Grassmannian this formal scheme is

algebraizable. The resulting projective scheme over Spec A will be denoted by ©% (£)-

Remark 2.3. Note that this does not give an arrow ©Cx(¢) — Ck- For example the module
M = W[l together with the ¢-linear map @ given by ®(1) = E(u) does not define a Z»-valued point

of Ck but rather a "formal” point
8pf 2, — Cx.

However if B is some Zr-algebra killed by some power of p, then
B(w) € (Boz, W{{w)))™,

and hence any locally free Bz, W [[u]]-modules 30

with semi-linear map ¢ satisfying
Bzt ¢ (™00 < I

defines a B-valued point of Cy.
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3. The image of the coefficient space

In the following we will assume that the representation 7 is flat (i.e. is the generic fiber of some

.. il .. ]
finite flat group scheme over Spec ©x) and that D3 s representable. This is the case if, for

Endg(5) = F (cf. [Co, Theorem 2.3|) [

example, . We write © for the universal flat deformation. By

Proposition 2:1 we have a map

=T (3.1)

see also [PR2, 4.a] and [Kil, 1.2.6, 1.2.7]. For some local Artinian ring A and some
¢ € Dy, () we write M(£) € R(4) for the corresponding ®-module. More precisely, this map
identifies Dse With Rp.y (cf [PR2, 4a]) The Jatter functor is given by all deformations in % of the

©-module M{p ) Especially we find that the map in (3:1) is formally smooth.

L . . . ] . . 1 f . . .
Lemma 3.1. The restriction of # o Gk, induces a map Spf B — Ds_. - Composing the canonical

projection Cx(p) — Spf R" with this morphism we obtain a 2-cartesian diagram of stacks on local
Artinian W(F)-algebras:

Crlg) —= Cx

|

Dﬁm —_— ﬁ.

Proof. Let A be a local Artinian W(F)-algebra such that pnA = 0 for some n > 0. We have to show

that there is a natural equivalence of categories

. M, D), E, o) with (I, &) e Crid), £ D5 (4
Crig(d) — { ( and }a,n isgm-:'rph{lam m}:?mﬁih é’:‘ j ﬂf{f&'[ ! } I

First it is clear that SPf ¥ — Dz induces a natural map from the left to the right which is fully
faithful. We have to show that it is essentially surjective.
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Let = =((M.®).L.a)pe an A-valued point of the right hand side. Then (%) = Cx(4) and by

[PR2, Proposition 4.3] there is an associated flat representation £ of Gk such that

B (L], B) = M(Ea, ).

This shows that ¥ = ((M.2).,5)defines a unique point in “x(e)(4) |t follows from the

construction that this point maps to x.

Remark 3.2. Note that it is not clear whether Pa~ is representable, even if 7= is absolutely

irreducible, since Gx. does not satisfy Mazur’s p-finiteness condition (¢ [Ma, §1. Definition]] Ag

there is an isomorphism

G, = Gal( K/ Koo) 2 Gal(k(())™F /R{(2)),

L)

each open subgroup of finite index H < G is isomorphic to the absolute Galois group of some

local field in characteristic p,
H = Gal(I{(2),=F /i({£)),

where | is a finite extension of k and t is an indeterminate. Hence by Artin-Schreier theory

(cf. [Se, X §3.a] for example), there is an isomorphism
Hotmeers (H, /pZ) = W) /p(H{{£),
and the latter group is infinite.

If one restricts the attention to Gk ..-representations of E-height < & then the

deformation functor Pie is representable if Endr(pc) = F (see [Kim, Theorem 11.1.2]). The E-
height of a p-torsion ©x.-representation is defined as the minimal h such that the

étale s-modulesgssociated to the representation admits an WJ[u]]- lattice with cokernel of the

linearisation of ® killed by E(u)" (see [Kim, Definition 5.2.8] for the precise definition).
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Proposition 3.3. Let Cx (p)denote the projective R-schemeobtained from Cr(p) by algebraization.
Then Cr(r) @wwm WIEIL/P] is reduced, normal and Cohen- Macaulay. The reduced subscheme
underlying the special fiber C'x(#) @wm Fis normal and with at most rational singularities. Further

the scheme C'x(¢) is topologically flat, i.e. its generic fiber is dense.

Proof. This is similar to [Kil, Proposition 2.4.6]. Denote by y : Spec F— Rthe F-valued point
defined by 7. Let x be a closed point of % (7). Extending scalars if necessary, we may assume
that x is defined over F. Denote by (Mo ®a) € R{F)the ®-medule defined by (Mo o) € Cx (F) the
d-module defined by x. We want to compare the structure of the local ring “cx(e).= (resp. its
completion) to the structure of a local model MK defined in [PR2, 3.a]. By loc. cit. Theorem 0.1.

there is a "local model"-diagram

Cr
N
O i

B 3.2)

with = and ¢ formally smooth. Here the B-valued points of the stack Cx are the

D-modules (M, ) = Cx(B) together with an isomorphism ™ — (B&z,WI[H)", for g Ze-algebrap,

We consider the following groupoids on local Artinian W(F)-algebras: Denote by Dx and Dy the
groupoids

www.ignitedminds.co.in



[JOURNAL OF ADVANCES IN SCIENCE AND TECHNOLOGY
o ]IEANI[SMIN February 1, 2011

ISSN-2230-9659

B (T, &) = Cg(B) such that

Dol B) = { (Mep (B/mp), 2@ '1‘313'2 (Mo @p (B/mp), 0o @ 1d) } }
_ (M, T) € R{E) such that

Pal8) = { (M ©z (Bfwz), ® ® id) = (Mo @ (B/mz), 3o ® id) } |

Fixing a basis of ™ we may view x as an F-valued point of “%. Denote by D. the groupoid of
deformations of x in Cxk.

Under the morphism ¢ in (3:2), the point x maps to a point = of MK. This point defines an

F @z, Ox-submodule L < (F g, Ox)". Let Ds be the groupoid of deformations of 7 i.e.

Dz = {Bog, O —submodules £ © (B g, f_’JH]d | Loop(B/mp) e Lap(B/mpg)}. This gl’OUpOid is pro-

represented by the completion of the local ring OMicz Now we have the following commutative
diagram.
Ty
VRN
= &
Spf @cK(P:l,iﬂ - D:c D{;
Ds., i Dy,

where the lower left square is cartesian by Lemma 3:1. As remarked above ¢ is formally smooth
and hence so is ¢". As Pz is pro-represented by the complete local ring at some closed point of the
local model MK and as & 7 and @ gre formally smooth, the assertion of the Proposition is true if it
Is true for MK. But if follows from the definitions (using the notation of [PR2, 3.c]) that
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My @z, B = HM;IEQK @z, LI
M

for some cocharacters

fg Gm:‘@o — {RESK% GLd}@? = H GL@%,
'c,b:K—t@P

such that

@1‘5: EB V%bﬂ

we{0,1}

where V Vo ={ve Q| (pryops)(a)y = a™v for all a € Q7 } and each of the .-'lfi"’"_:ﬁ is a local model in
the sense of [PR1] (compare [PR2, Remark 3.3]). Hence, by [PR1, Theorem 5.4], the generic fiber

of the local model My« ©2 @ris normal, reduced and Cohen-Macaulay. The special fiber

decomposes as follows:

My ©z,F, = [[ M2 0y x @2, F

where _ runs over all cocharacters
Gy, — (Beer g, Gy,

'Gﬂ".!- —* R’E‘SI{__-"QP GL&'

and where fmax(¥) js the maximal dominant cocharacter (for the dominance

order) such that the composition
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G, gy, —= (Remg g, CLag, et (Fesr g, Gy,

equals _. Now the claim again follows from [PR1, Theorem 5.4]. _

Remark 3.4. We need to formulate the result on the local structure of the special fiber as a result

. 1 rloc . .
about the underlying reduced scheme as the local models Mk are in general not defined over Z»
but over a ramified extension and hence there are nilpotent elements in the special fiber

Mg Bz, Fp.

C'ge

Proposition 3.5. The map %P} — Spec % hacomes an isomorphism in the generic fiber over

W(F), i.e.
Crel ) O Frac(W (F)) —== Spec(RALL]),

Proof. Using the result on the local structure of Cx(2), the proof is the same as in [Kil,

Proposition 2.4.8]. The main point is to check that the map is a bijection on points. _

Theorem 3.6. Suppose that the universal flat deformation ring R" of 7 gxists and denote by # the

universal flat deformation. Then the morphism ©& (#) — Spec Blis yonologically surjective.

We will prove this theorem in section 4 below. We will conclude this section with some

consequences of Theorem 3:6.

Corollary 3.7. Assume that R exists, then Speck? is topologically flat. Proof. This follows from

Theorem 3.6 and the corresponding result on “ (7)-
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Proposition 3.8. Assume that the universal deformation ring R of __  exists with universal
deformation #""". Then Cc(p™™) — Spec Rfactors over SpecR and is (canonically) isomorphic to

Cri(p).

A ¢ .
Proof. > 0 denote by pp : Spec(R"/mpi') — R the  reduction  of  ° modulo

n+1

Wi and similarly (9™%)a. \\je consider the following diagram with all rectangles cartesian.

Cr{ o) Cref g7 Cx

! l

Bpec{ B mBtY) — = Bpee( B fmEt) e T
Far

By [PR2, Proposition 4.3] the mulplus.m Cpe(plniv) — Spec(ft/mEH)

Spec( A/ 111?‘?"'1

1 factors ower
y and hence wlon ) — I::_:!' (i) js an isomor ph_IE-]Il

As Spf B9 — Spf R i= a closed immersion the formal scheme Cre () 18 a projective
formal Spf R-scheme and applying formal GAGA (see |[EGA3, 5.4|) over Spf R
we find that also the algebraizations Cp(p) and Cp (") are isomorphic over
Spec F. OJ

Proposition 3.9. Assume that e = [ : Ko < p — 1. Then the morphism
' (o) — Spec e

is an isomorphism.

Proof. It is enough to show that Cx(p) — SPf Fjs an jsomorphism. We show that both objects
pro-represent the same functor, i.e. Cx(?) pro-represents the deformation functor Dj-. Let Abe a

local Artinian ring and ¢ € D3(4) a flat deformation of 7 By a result of Raynaud (cf. [Ra,

Proposition 3.3.2]) there is a unique flat model for this deformation. Denote by

(M, @) the W[u]]module agg0ciated with this group scheme by Kisin’s classification. This is a
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WI[[u]]-submodule of the ¢tale @-meodule (Af, @) over Aw ((w)) o rresnonding to the (twist of) the

restriction of ¢ to Gr... Replacing M by its AW[[u]]-span inside M, we may assume that it is an
AW][[u]]-submodule of M. Applying the argument of [PR2, Remark 4.4] we find that ®t is free
over AW[[u]] This defines the unique point in Cx(A) above ¢-. We have shown that the functor

. ST | IR i i
morphism “%(?) — P5is bijective on A-valued points. The claim follows.

Remark 3.10. All the above results also apply to framed deformation rings. We need to replace the
deformation functors by deformation groupoids and the fiber products by 2-fiber products. For the

.DD

corresponding result on the local structure one only needs that the morphism Y= — ™ is smooth,

where Ds.. denotes the groupoid of framed deformations of 2-. The result for framed
deformations (or for deformation stacks) can be stated as follows: Given a field F of characteristic
p and a morphism Spec F — Spec Bf. There exists an fpgc-cover F* of Fand a integral complete

local ring (A;m) with char(FracA) = 0 and A/m = F’ such that the composition
Spec FY — Bpec F — Spec frag

lifts to a morphism SpecA ! SpecR.

Remark 3.11. If the prime p equals 2, then there is a similar classification of finite flat group
schemes as in Theorem 2:2, but it only applies to connected group schemes (see [Ki2]). Hence the
same results hold in the case p = 2, if one considers deformations that are the generic fiber of a

connected finite flat group scheme.

4. Proof of Theorem 3.6
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In this section we prove the main result, Theorem 3.6.

Let e = [I{ : Ky denote the ramifieation index of i over ;. Then the degree of
the Eisenstein polynomial E(u) is € and its reduction modulo p is u® = Eful.

For the rest of the section we denote by Op = [[[w]] a complete discrete valuation
ring in characteristic p with finite residue field ! containing &. We will use the
notation A, = Op /(=" +!) “r, k. For aring R and a free F{(u))-module R((u))?, a
finitely generated projective R[[u]]-submodule that generates R((u))® will be called
a lattice in R({u))?. Finally, we will write Op{{u}} for the w-adic completion of
Op ((u)).

Lemma 4.1. Let (M, ®) € R(Op/(@™)) and M < M a finitely generated
A, [[u]]-submodule such that ML /u] = M and

W = B(H*M) M,

Then the l-dimension of the u-torsion part of the finitely generated l[[u]]-module
M/ is bounded by

dimy (MM /oD )= < [k F,ld 72T
Proof. We can describe the u-torsion as follows.

e
M/ = E]grgim A M)/ (@M N M + M N,

i=0

In this direct sum the summand for i = 0 is the free part in the quotient and the i-th summand is the

contribution of the elements in M N (@ M@= 1M ) tg the

wrtorsion. Further forie 1, ..., n— 1 we have
dimy (T wéMjl,’{wé’m—l- 2 wé"i'iflzfjl
+ dim (30 N w00 it et 4 0wt A
= dimy (0 N w10 S I 4 0 Nt A,
This can beseen using the interpretation of dim (SN M) w4 0N w1 0
a2 the sum of all elementary divisors of the lattice (N @®M) /(0N Nw* T M) with
respact 1o w ot/ (SNt ) as I[[w]]-lattices in w* M /™ 'S and the fact that tha

multiplication by w induces omorphisms from w*M /w104 to w10 fw 2 0
ford<m—1. Now we find that

dirr (S0 /eI "5 = dirn (S0 N ™ D) f .
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The Lemma now follows from the following claim:

w10 N ™ M) © IR,

We denote by j the minimal integer such that ' (M N ="M} c ="M. Then pj is the minimal integer

u" D e* (MM M) o oD o* ).
u R (MO M)) C @ R(*M). Bt \we have

r such that
() o «f IR o ST I N @ M) o LTI (EN N M),

Hence »7 = ¢ +Jand the claim follows.

Lemma 4.2. Let (M.®) € R(Op/(@"™)). Then there are at most finitely many finitely generated
An[[u]]-submodules M < M such that M[1/u] = M and

w50 ¢ BTN < N,

Proof. The module M is @ [k : Fpl-dimensional I{(u)) yector space. Every finitely generated An[[u]]
Submodule M M with :I!I[lu] = M is an -!1[['-!I”-L"-Lt-|:-ii_':e in M. Hence the argument Of [Kll,
Proposition 2.1.7] shows that there exists a lattice

Mo < M and integers i1,12 € T such that all M < M gatisfying the properties of the Lemma satisfy
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WP C M C M,

These are only finitely many lattices. _

Proposition 4.3. Let (M.®) be a point Spf Op — R and denote by (M,.®.) the reduction modulo

—T41
[FW ’

i.e. the ¢-module defined by Spec Op /@™t — R. Assume that there exist finitely generated

M, c M, a1
An[[u]] submodules ~ such that Mall/u] =M, gng

2 e C ol M) C M.
Then there exists (M. ®) € Ki{Or) sych that

(M, mod w™tl) = (M, T,

Proof. We denote by <~ the set of all finitely generated An[[u]]-submodules ™ < M. such that

m[l-l E-!] = ;"]-.l.irﬂ and
wil C el C M.

By assumption these sets are non empty and by Lemma 4:2 they are finite. Further if

MNe M, and m < n, then the image of ™ under the map

M, — N

defines an element of = denoted by fum(9).As the sets Z: are non empty and finite we can
inductively construct a sequence M, € Z, such that f,.,(M,) =M., for ™ =m We denote this
sequence again by Yi» instead of Mo By Lemma 4:1 there are only finitely many possibilities for

the isomorphism class of the u-torsion in ¥i=/@M- Hence there exists a strictly increasing

sequence ni 2 N such that
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for 7 =M. Now there is an isomorphism
Mhroe/ 0 M 2 Doy B (W™ M),
where the last summand is the u-torsion part of the left hand side. We find that
(Mo /M) ™ = (W ) B (W S M) %) o

Using (4:1) and Nakayama’s Lemma it follows that

Wi 5 W —— W
for all j < i. Especially there is an r £ M (independent of i) and generators
By, by of My, as an Ay, [[u]}module such that the by’ reduce to b modulo

£, e g . . - v il .
w™+! for all § < ¢ Choosing a compatible expression of @, ( h} ') in terms of the

() - - .
b we can define commutative diagrams for j < i

(A [[]”, B —> (Mg, O

l |

{Anj [[t’f’]]%s %n;._) —_— {mﬁu ':I:"""f;r]I
where all arrows are surjective. In the limit we get morphisms

(O ar, B[], )

|

B = lim{ A ()", $) — (I, 8).

The modules in question have finite length. Note that we do not claim that the linearisation of e_ is

an isomorphism after inverting u.
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Now the image of the vertical arrow defines (after inverting u) a free (Cr@=k)((x]})- submodule

N of the (Op ©g, k){{u}}-module M gych that
N Doeiy il vt —= =77

The image of N under M — M defines a finitely generated (OF ©F. #)({u)) submodule N such that
N ®@opiry Orl{u}} —= 77,

Further N is ®-stable by construction. We claim that N is free. As ¥ < !we have isomorphisms

(O &r, B((«) — [] Or((=).

i

And hence If = Aol ¢ JF0d0) L BF0H 00 where g iz a fixed embedding,
¢ iz the absclute Frobenius on k and f = [k : F,]. The endemorphism T maps
AF(#0) 40 AR o). A IV i Bostable we find that IV = N0 o . i (7 o),
where IN(#¥0) is a finitely generated Op((2))-submodule of J414%0) that generates
10 pver Opdlull and hence iz free of rank 4, as @p({2)) is principal.

Now (N, @ izthe object claimead in the Proposition: It follows from the construction
that (N, @} reduces to (M, &) modulo w™?! and hence 1t follows from Nakayama's
lemma that the linearisation of & is invertible on IV. O

Before we continue we want 10 remind the reader that not every 4.[[+]-submodula
Mo © M satisfying 2590, C Tl @) C My, defines an Op o™ tl-valued point
of Cr. This iz only the case if W, i a free A [[z]|-medule.

Proposition 4.4. Let (M, &) € R{OF) and dencte by (M, Tn) € R{(Op /w1
the reduction modulo w™Tl. dssume that there exist findtely gemerated Ai[[w]]-
submodules W, < M, suck that N [1/2] = M, and

E&Emn - @n{ﬁé*mx} - mn

Then there exists the diagonal arrow in the diagram

Cr

|

ppee Op ——= T2,
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Proof. Consider the free (F @p, k)((u))-module M @o ) Fl{u)). We choose
an (F @p, k)[[u]]-lattice M C M @o,u)y F((u)). As the linearisation of @ is an
isomorphism, there exist r £ M such that

uN fI*(rh*"ﬁj cuTN,

l.e. m Is an F-valued point of the stack Cr defined in (2:1). By [PR2, Corollary 2.6] and the

valuative criterion of properness, the diagonal arrow in the diagram below exists,

cpee F—=C,

| ]

cpee Up —= T,
This means that eN extends to an (Or @r, k)[[u]]-lattice M gych that
@ C DN Cw "I

We denote by 7. the reduction of 9t medule @™+ By assumption there are finitely generated

An|[u]]-submodules M, < A, such that Mal1/u] = Ma and
wfit, C (g W) C Wi

By the same argument as in the proof of Proposition 4:3 we can assume that Mn maps onto a1
under the projection M — M1 for all . Now the argument of [Kil, Proposition 2.1.7] shows

that there is an integer s only depending on r and e such that

2 ) [l Pt | O

If we write 2¢ for BmMn. vpon this shows

) ) [l Tt | A

Hence 9 is finitely generated over Orlull and contains an (OF @r, k)((u))-basis of M. Further it

(F g, k)[[«]]-

still satisfies ““ M < @(¢* M) € M and M @op 1wy Fllu]] s free over Hence we obtain

the following commutative diagram
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Bpec F ——=CL

L

cpec Op —= T,

where Ck = C *spee 2,5Pec Z/PL s the reduction of C modulo p (compare [PR2,
3.b.]). By loc. cit. the stack C; K is a closed substack of C¢ = Ce *spee z, Spec Z/pL.
Using the valuative criterion of properness again we obtain the desired arrow.

Proof of Theorem 3.6. By Proposition 3:5 the morphism Ci () — Spec B js an isomorphism in the
generic fiber over W(F). Especially it is surjective. We write Cx(#) = Cx(p)@w @ F for the special

fiber of Cic(p) and B for R% /pRA.

Let 7 be a point of R that is not the unique closed point x0. We mark the specialization

1~ o py @ morphism
2pec Op — i

where Spec Or is a complete discrete valuation ring and the morphism maps the generic point of
Spec Ur to n and the special point to X,. By a Zariski density argument is suffices to assume that
the residue field of @» contains k (recall that r? is a quotient of a power series ring in finitely
many variables over W(F)). The morphism

Spf Op —s SpiE — Tj,, 4.2)
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induces modules (Mn: ®n) € R(Op/="*1).By Kisin’s classification of finite flat group schemes

(Theorem 2:2) there exist finitely generated k[[u]]-submodules = Ma such  that
Ma[l/u] = My 50

Wi, © S (@™ C I,

Replacing ™a by the (Op /@™ &g, k)[[u]}modules that it generates, we may assume that P is

stable under the action of ©r/="*1. By Proposition 4:3 the arrow Spf O — R is algebraizable to a

Op — R

morphism Spec *“and by Proposition 4:4 we obtain a commutative diagram

Cr

|

cpec Op ——= T,

This yields a commutative diagram

Cxlg)

e

apt Op — T

We have to show that the arrow Spf Or — Da..factors over £ and that this morphism coincides
with the arrow in (4:2).

By [PR2, Proposition 4.3] we obtain from the morphisms Spec Or/@"*' —Ck flat G-
representations such that the restriction to x- induces the objects (M= ®=)under the morphism
(3:1). By [Br, Theorem 3.4.3] the restriction to “x= is fully faithful on the category of flat p-

torsion GK-representations and hence the two morphisms Spf — Spf ® coincide. This yields

the claim.
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