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ABSTRACT 

One of the key epigenetic modifications in the eukaryotic genome is DNA methylation; it has 

been shown to play a role in complex cell-type regulation of gene expression, and thus cell-type 

identity. The gold standard for calculating methylation across the genomes of interest is bisulfate 

sequencing. Here, for the study of high-throughput bisulfate sequencing, we examine many 

techniques used. To guarantee data accuracy, we implement advanced short-read alignment 

techniques as well as pre/post-alignment quality check methods. In addition, after alignment, we 

address subsequent review steps. We implement different methods of differential methylation and 

compare their output using datasets of simulated and actual bisulfate sequencing. We also 

address the techniques used to segment methylomes to classify regulatory regions. We implement 

methods of annotation that can be used for further classification by segmentation and differential 

methylation methods of regions returned. Finally, we analyses software packages that 

incorporate techniques to deal effectively locally with large bisulfate sequencing datasets and 

address workflows for online research that do not require any previous programming skills. The 

analysis techniques outlined in this review will direct researchers to the best bisulfate 

sequencing analysis practices at any stage. 

Keywords – Strategies, Analyzing, Bisulfate 

INTRODUCTION 

One of the key covalent base modifications in eukaryotic genomes is cytosine methylation (5-

methylcytosine, 5mC). In a cell-type specific manner, it is involved in epigenetic control of gene 

expression. It is reversible and, by cell division, can remain stable. The classical understanding 

of DNA methylation is that when it occurs in a CpG rich promoter region, it silences gene 

expression (Bock et al., 2012). It occurs mainly in metazoan genomes on CpG dinucleotides and 

occasionally on non-CpG bases. In human embryonic stem and neuronal cells, non-CpG 

methylation has been predominantly observed (Lister et al., 2009) (Lister et al., 2013). In the 

human genome, there are about 28 million CpGs, 60-80% of which are normally mentholated. In 

CG-dense regions called CpG islands in the human genome, less than 10 percent of CpGs occur 

in. 
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It has been shown that DNA methylation is often not distributed evenly across the genome, but 

rather is correlated with the density of CpG. In vertebrate genomes, in CpG-rich regions such as 

CpG islands, cytosine bases are typically unmethylated and appear to be methylated in CpG-

deficient regions. Except for the CpG islands, vertebrate genomes are mostly CpG deficient. 

Invertebrates such as Drosophila melanogaster and elegant Caenorhabditis, on the other hand, do 

not display cytosine methylation and thus do not have CpG rich and poor regions, but rather a 

steady CpG frequency over the genome (Deaton and Bird, 2011). DNA methylation is formed in 

combination with DNMT3L by the DNA methyltransferases DNMT3A and DNMT3 B and is 

sustained by the methyltransferase DNMT1 and associated proteins through/after cell division. 

During early development, DNMT3a and DNMT3b were in charge of de novo methylation. 

During replication or exclusion of DNMT1 from the nucleus, loss of 5mC can be accomplished 

passively by dilution. Recent results of the protein family ten-eleven translocation (TET) and 

their ability to transform 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) in 

vertebrates provide a mechanism for the demethylation of catalysed active DNA (Tahiliani et al., 

2009). Iterative TET-catalyzed 5hmC oxidation leads to 5-formylcytosine (5fC) and 5-

carboxylcytosine (5caC). G/T mismatch-specific thymine-DNA glycosylase (TDG) excises the 

5caC mark from DNA, which results in cytosine residue returning to its unmodified state (He et 

al., 2011). Besides these, mostly bacteria, but probably 

 

Higher eukaryotes contain base modifications on bases other than cytosine, such as mentholated 

adenine or guanine (Clark et al., 2011). One of the most reliable and popular ways to measure 

DNA methylation is bisulfate sequencing. This method, and related ones, allows measurement of 
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DNA methylation at the single nucleotide resolution. In this review, we describe strategies for 

analyzing data from bisulfate sequencing experiments. First, we introduce high-throughput 

sequencing techniques based on bisulfate treatment. Next, we summarize algorithms and tools 

for detecting differential methylation and methylation profile segmentation. Finally, we discuss 

management of large datasets and data analysis workflows with a guided user interface. The 

computational workflow summarizing all the necessary steps is shown in Fig. 1. 

Bisulfate sequencing for detection of methylation and other base modifications 

Techniques for profiling genome-wide DNA methylation fall into four categories: methods 

focused on DNA-methylation-sensitive restriction enzymes (such as MRE-seq), methyl cytosine-

specific antibodies (such as MeDIP-seq methylated DNA immunoprecipitation (Weber et al., 

2005)), methyl-CpG-binding domains for interest-site enrichment of mentholated DNA 

(Brinkman et al., 2010) and bas-specific domains (Brinkman et al., 2010) However, over 

measured regions ranging in size from 100 to 1000 bp, the first three methods allow methylation 

detection. DNA methylation at single nucleotide resolution is determined by methods using 

sodium bisulfate treatment that converts unmethylated cytosine to thymine (via uracil) while 

mentholated cytosine remains safe. 

We will concentrate on bisulfite-conversion based sequencing techniques for the remainder of 

this segment. The 'gold standard' for assaying DNA methylation is called whole genome bisulfite 

sequencing (WGBS) because it offers global coverage at single-base resolution. Briefly, with 

high-throughput sequencing, it incorporates bisulfite conversion of DNA molecules. The 

genomic DNA is first randomly fragmented to the appropriate size to conduct WGBS (200 bp). 

By ligation to adaptors containing 5mCs, the fragmented DNA is translated into a sequencing 

library. The library of the series is then treated with bisulfate. This treatment transforms 

unmethylated cytosine into uracil effectively. It is sequenced using high-throughput sequencing 

after amplification of the library treated with bisulfate by PCR. Uracils will be portrayed as 

thymine after the PCR. Not only does an effective recall of cytosine methylation require 

adequate sequencing depth, but it also relies heavily on the quality of bisulfite conversion and 

amplification of the library. The advantage of this shotgun approach is that, in unbiased 

representation, it usually achieves coverage of over 90% of the CpGs in the human genome. It 

enables the detection of non-CG methylation as well as the identification of partly mentholated 

domains in embryonic stem cell valleys (PMDs, and regions with low methylation distal 

regulatory elements (LMRs, and DNA methylation valleys (DMVs). 

WGBS remains the most costly procedure, considering its benefits, and standard library 

preparation involves relatively large amounts of DNA (100ng-5 ug); as such, it is typically not 

applied to large numbers of samples. High sequencing depth is needed to achieve high sensitivity 

in the detection of methylation differences between samples, leading to substantial increases in 

sequencing costs. Another technique is reduced representation bisulfate sequencing (RRBS), 

which can also profile DNA methylation at single-base resolution. It combines genomic DNA 

digestion with restriction enzymes and bisulfate sequencing in order to enrich areas with a high 

CpG content. It then relies first on genomic DNA digestion with restriction enzymes, such as 

MspI, which recognises 5'-CCGG-3' sequences and cleaves upstream CpG dinucleotide 

phosphodiester bonds. Only CpG dense regions can be sequenced and CpG-deficient regions, 

such as functional enhancers, intronic regions, interagency regions or typically low methylated 
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regions (LMRs) of the genome, are not interrogated. In CpGpoor areas, it has broad genome 

coverage and explores about 4% to 17% of the approximately 28 million CpG dinucleotides 

distributed throughout the human genome, depending on the depth of sequencing and which 

variant of RRBS is used. 

A combination of bisulfite sequencing with high-throughput sequencing is often used for 

Targeted Bisulfite sequencing, but a previous set of predefined genomic regions of interest is 

needed. PCR amplification of regions of interest padlock probes (Ball et al., 2009), 

hybridization-based goal enrichment and convert-then-capture approaches are commonly used 

protocols The fact that bisulfite sequencing cannot differentiate between hydroxymethylation 

(5hmC) and methylation (5mC) is one of the major assay-specific problems (Huang et al., 2010). 

Upon bisulfite treatment, hydroxymethylation converts to cyto-5-methanesulfonate which then 

reads as a C when sequenced In addition, a mechanism for non-passive DNA demethylation is 

5hmC mediated by TET proteins. Measurements of methylation for tissues with high 5-

hydroxymethylation would therefore be inaccurate, at least in some genomic regions. The design 

of Tet-assisted bisulfite sequencing (TAB-seq) (Yu et al., 2012) and oxBS-Seq (Booth et al., 

2012) has made it possible to differentiate between the two single-base resolution modifications. 

In addition to 5hmC, mammalian genomes have recently achieved single-base resolution 

mapping of 5caC using CAB-seq (Lu et al., 2013) and detection of 5 fc (fCAB-seq (Song et al., 

2013a; Booth et al., 2014) and redBS-Seq (Song et al., 2013a; Booth et al., 2014)). 

Alignment and data processing for bisulfite sequencing 

Since BS-seq changes unmethylated cytosine (C) to thymine (T), subsequent steps of analysis 

focus on counting the number of conversions from C to T and quantifying the per-base 

methylation ratio. This is simply achieved by recognizing C-to-T conversions in the aligned 

reads and dividing the amount of Cs for each cytosine in the genome by the sum of Ts and Cs. 

Being able to do the quantification accurately depends on quality control prior to alignment, the 

methods of alignment and quality control post alignment. Since the quality of base calling is not 

constant and could change between sequencing runs and within the same reading, it is necessary 

to check the quality of the base (which represents the level of confidence in the base calls). 

Miscalled bases may erroneously be counted as C-T conversions and such errors should, if 

possible, be avoided. You can perform this simple quality check via fast QC software 

In addition, adapters may often be sequenced and they can either lower the alignment rates or 

trigger incorrect C-T conversions if not properly removed. To mitigate problems with false C-T 

conversions and to improve alignment rates, we suggest trimming poor quality bases on 

sequence ends and eliminating adapters. Using trimming programmers such as Trim Galore 

(http://www.bioinformatics.babraham.ac.uk/projects/trim galore/), this can be done. When 

quality control and processing of pre-alignment is completed, the next step is to align where 

future C-T conversions should be treated. The methods of BS-seq alignment depend mainly on 

modifications of established methods of short-read alignment. Bismarck, for example, relies on 

Bowtie and conversion of reads and genomes in silico C-T (Krueger and Andrews, 2011). In 

silico conversion strategy, many other aligners use this, such as: Methyl Coder (Pedersen et al., 

2011), BS-seeker2 BRAT-BW and Bison Other strategies, such as Last (Frith et al., 2012), use a 

particular score matrix that can tolerate C-T mismatches or masks Ts in the reads and matches 

them to genomic Cs, such as BSMAP (Xi and Li, 2009). As new alternatives always appear, 
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there are few detailed benchmarks of the aligners, but previous attempts to compare the aligners' 

output did not find sufficient differences between aligners to exclude any from consideration. 

In addition, in some aspects of the benchmark, recent tools are typically only better; they may, 

for instance, outperform competing tools in terms of computation time, but show a much higher 

memory footprint or have a worse mapping quality, some of these performance differences also 

disappear by different tool parameters and we do not see convincing evidence that an existing 

tool such as Bismar We also use Bismark for our own work because it offers BAM files, as well 

as additional methylation call-related metrics and files. There is still a need for more quality 

control after the alignment and methylation calls. To be highlighted here, there are possible 

concerns. Unmethylated Cs are inserted at the ends of the DNA fragments during the final repair 

phase following fragmentation (Bock, 2012). This leads to a large decrease in the average degree 

of methylation that can be observed at certain ends in a methylation bias (M-bias) map. In 

addition, incomplete conversion can occur during bisulfate treatment, where not all unmethylated 

Cs are converted to Ts. A simple solution would be to ignore the affected positions in the 

sequenced reads (Genereux et al., 2008). 

Owing to the perception of the non-converted unmethylated cytosine as mentholated, incomplete 

conversion produces false positive results. We can calibrate the conversion rate for organisms 

without significant non-CpG methylation, such as humans, by using the percentage of non-CpG 

methylation. We expect the conversion rate to be as close to 100 percent as possible for a high 

quality experiment, average values for a successful experiment would be higher than 99.5 

percent . The addition of spike-in sequences with unmethylated Cs and the number of Ts for 

unmethylated Cs is another way to calculate the conversion rate. A further possible issue is the 

degradation of DNA during bisulfite therapy. Long incubation time and high concentration of 

bisulfite will lead to approximately 90% of the incubated DNA degradation (Grunau et al., 

2001). Testing specific alignment rates and reading lengths after trimming is therefore critical. In 

addition, the majority of CpGs with high inter population differences have been shown to contain 

common genomic SNPs (lower allele frequency > 0.01). (Daca-Roszak et al., 2015). 

We suggest that known C/T SNPs that can interfere with methylation calls be removed to ensure 

more accurate analysis of the results. PCR bias is resolved by the last post-alignment consistency 

process. A easy approach might be to delete reads on the same strand that are aligned to the exact 

same genomic location. You may use the "samtools rmdup" command or the Bismark tools to 

perform this de-duplication. For RRBS, it is not advisable to eliminate PCR duplicates by 

looking at overlapping reading coordinates. Instead, by eliminating regions with exceptionally 

high coverage, one can try to eliminate PCR bias; this approach generates concomitant 

methylation measurements with orthogonal methods such as pyrosequencing (Akalin et al., 

2012a). 

Segmentation of the methyl me  

The study of methylation dynamics is not limited solely to sample-to-sample differentially 

methylated areas, except that there is also an interest in analyzing the methylation profiles of the 

same sample. Depressions in methylation profiles usually recognize regulatory regions such as 

gene promoters that co-localize with islands of CG-dense CpG. Many gene-body regions, on the 

other hand, are heavily methylated and CpG-poor (Bock et al., 2012). Such observations will 
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establish a bimodal model based on the local density of CpGs of either hyper- or hypomethylated 

regions (Lövkvist et al., 2016). However, given the discovery of CpG-poor regions with locally 

reduced levels of methylation (on average 30 percent) in pluripotent embryonic stem cells and in 

neuronal progenitors in both mouse and human, a different model seems also appropriate 

(Stadler et al., 2011). Such low-methylated regions (LMRs) are distal to promoters, have no 

overlap with islands of CpG and are associated with enhancer marks such as p300 binding sites 

and enrichment with H3K27ac. 

Using computational methods, the detection of these LMRs can be accomplished by segmenting 

the methyl me. One of the well-known segmentation methods is based on a three-state Hidden 

Markov Model (HMM) without awareness of any additional genomic information such as CpG 

density or functional annotations, taking only DNA methylation into account (Stadler et al., 

2011). Completely methylated regions (FMRs), unmethylated regions (UMRs) and low-

mentholated regions were the three states that the authors targeted (LMRs). 

This segmentation is a description of methylome properties and characteristics in which 

unmethylated CpG islands correspond to UMRs (Deaton and Bird, 2011), most of which are 

categorised as FMR since most of the genome is methylated (Bird, 2002) and LMRs are a new 

function with intermediate methylation levels, poor CpG content and shorter duration compared 

to CpG islands (Stadler et al., 2011). A two model state HMM is assumed by other segmentation 

techniques such as MethPipe and does not distinguish between LMRs and UMRs. The authors of 

the MethylSeekR R package (Burger et al., 2013) adapt the concept of a three-state methyl me 

and also recognise partially methylated domains (PMDs), another characteristic of methyl me 

found in human fibroblast, for example, but not in embryonic stem cells of H1. 

These wide regions are characterised by highly disordered methylation, spanning hundreds of 

kilobases, with average methylation levels below 70% and covering almost 40% of the genome 

(Lister et al., 2009; Gaidatzis et al., 2014). PMDs do not generally occur in each methyl me, but 

a sliding window statistics can detect their existence (Burger et al., 2013). The genome wide 

identification is achieved by training a two-state HMM in both MethylSeekR and MethPipe, to 

distinguish PMDs from context regions. Prior to the characterization of UMRs/LMRs or hyper-

/hypo ethylated areas, the PMDs are then masked (Song et al., 2013b) (Burger et al., 2013). 

There are also other strategies of segmentation based on change-point analysis, where a genome-

wide signal's change points are reported and the genome is divided between consecutive change 

points into regions. In the sense of copy number variation detection, this technique is usually 

used (Klambauer et al., 2012), but can also be extended to methylome segmentation. A package 

that implements this segmentation approach based on change points is methylKit. It defines 

segments that use a mixture modelling approach to be further clustered. This clustering is 

focused only on the segments' average degree of methylation and enables the identification of 

distinct methyl me characteristics comparable to UMRs, LMRs and FMRs. This strategy offers a 

more robust segmentation approach where one can settle on the number of segmentation groups 

after segmentation. Whereas in HMM-based models, the numbers of segmentation groups must 

be identified, a priori, or several rounds of HMMs with different numbers must be run to identify 

which model matches the data best. 
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Strategies for dealing with large datasets 

With growing amounts of epigenetic data accessible to the public, it is tempting for several 

purposes to recreate the findings of published articles, e.g. to better understand the rationale 

behind the measures taken by the writers or to improve general data intuition. In the case of 

bisulfite sequencing results, using whole genome methylation data from multiple samples, we 

might want to perform differential methylation analysis in R. The issue is that file sizes may 

easily range from hundreds of megabytes to gigabytes for genome-wide studies, and processing 

numerous instances of those memory files (RAM) can become unworkable unless we have 

access to a high-performance cluster (HPC) with comprehensive RAM. If we want to use a small 

RAM desktop computer or laptop, we either need to restrict our research to a subset of data or 

use packages that can cope with this situation. 

In order to allow multiple WGBS samples to be processed within a reasonable period, the 

developers of the RAD meth package for differential methylation analysis suggest running the 

programme on a "computing cluster with a few hundred available nodes." On a personal 

workstation, the same analysis can also be conducted with the downside of increasing the 

computational time, which is usually based on three factors: the coverage of the sample, the 

number of locations analysed and the number of samples. If one's workstation is a multicore 

machine, there is one way to speed up the time-consuming regression process. The authors 

provided a script for splitting the input data into smaller parts that could be separately processed 

and then combined using UNIX commands. RnBeads (Assenov et al., 2014), which internally 

relies on the 'ff' package, is a package for the systematic analysis of genome-wide DNA 

methylation data that can accommodate massive data. The 'ff' R package (Adler et al., 2014) 

makes it possible to work with datasets larger than usable RAM by storing them as temporary 

files and providing an interface to allow flat files to be read and written and run on the parts 

loaded into R. By leveraging flat file databases, the methylKit package offers very similar 

functionality to replace in-memory objects if the objects become too big. In addition to meta 

data, the internal data has a tabular structure that stores chromosome, start/end location, strand 

data of the related CpG base, as well as several other biological formats such as BED, GFF or 

SAM. It can be indexed using the generic Tabix tool by exporting this tabular information into a 

TAB-delimited file and ensuring that it is position-sorted accordingly (Lövkvist et al., 2016). 

Tabix indexing in general is a generalisation of BAM indexing for TAB-delimited generic 

directories. In terms of the few search function calls per query, it inherits all the benefits of BAM 

indexing, including data compression and effective random access (Li, 2011). MethylKit relies 

on Rsamtools (http://bioconductor.org/packages/release/bioc/html/Rsamtools.html), which 

incorporates R tabix features, so that internal methylKit artifacts can be stored easily on the disc 

as a compressed file and can still be accessed quickly. Another benefit is that existing 

compressed files can be loaded in collaborative sessions, enabling intermediate analysis results 

to be backed up and transferred. 

Annotation of DMRs/DMCs and segments 

The regions of interest obtained through differential methylation or segmentation analysis often 

need to be integrated with genome annotation datasets. Without this type of integration, 

differential methylation or segmentation results will be hard to interpret in biological terms. The 

most common annotation task is to see where regions of interest land in relation to genes and 
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gene parts and regulatory regions: Do they mostly occupy promoter, intronic or exonic regions? 

Do they overlap with repeats? Do they overlap with other epigenomic markers or long-range 

regulatory regions? These questions are not specific to methylation −nearly all regions of interest 

obtained via genome-wide studies have to deal with such questions. Thus, there are already 

multiple software tools that can produce such annotations. One is the Bioconductor package 

genomation (Akalin et al., 2015). It can be used to annotate DMRs/DMCs and it can also be used 

to integrate methylation proportions over the genome with other quantitative information and 

produce meta-gene plots or heatmaps. Another similar package is ChIPpeakAnno (Zhu et al., 

2010), which is designed for ChIP-seq peak 

 

Fig. 4. Comparison of characteristics found by segmentation instruments examining methyl me 

chromosome 2 of the H1 embryonic stem cells. The distribution of (a) segment lengths in log10 

transformed base pairs (bp) (b) CpG location covered by each segment in log10 transformed 

numbers (c) average methylation score per segment is shown by box plots for each feature. (a) − 

(c) Boxplot colours show either methylKit or MethylSeekR as the method generating the 

features. (d) Heatmap showing the percentage of segments of methylSeeker and methylKit 

overlapping H1 embryonic stem cells with chromatin state annotations. 

Annotation but could also be used for DMR/DMC annotation to a certain degree. 

CONCLUSIONS 

In this review article, we explored the experimental and analytical methods of genome-wide or 

targeted measurement and analysis of DNA methylation. For bisulfate sequencing experiments, 
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starting from read alignment and quality check, we presented all the required steps of 

downstream study. Differential methylation and methyl-me segmentation techniques were 

explored and compared. Our attempts to compare differential methods of methylation have 

shown that different methods have comparable efficiency. Based on the ultimate aim of their 

study, one may choose methods. For subsequent validation studies (DSS, limma, BS mooth, 

MethylKit with F-test and over dispersion correction), the techniques that are rigorous and 

restrict the false positive rates are fine, but these methods compromise sensitivity (true positive 

rate) in order to reduce false positives. A very relaxed technique has the best overall accuracy but 

the highest false positive rate, such as the default methylKit process. Chi-square checking after 

over dispersion correction is a successful alternative to rigid and relaxed techniques 

(implemented in methylKit). 
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