Existence Results for a System of Fractional Differential Equations with Fractional Order Random Time Scale

Dr. R. Prahalatha¹* Dr. M. M. Shanmugapriya²

¹ Assistant Professor, PG Department of Mathematics, Vellalar College for Women (Autonomous)

² Assistant Professor & Head, Department of Mathematics, Karpagam Academy of Higher Education

Abstract – This paper explores the extant of unique solution for a set of non-linear fractional differential equation with fractional order in capricious time lamina. The solutions are demonstrated by some basic fixed-point theory, Kooi's, Rogers and Krasnoselskii-Krein conditions

Keywords – Fractional Impulsive Differential Equations, Initial Value Problem, Fixed Point Theorem.

INTRODUCTION

Consider the fractional differential equations with initial conditions as given below

$$s \in [s_a, s_u + \alpha], 0 < a \le 1$$

$$s \in [s_a, s_u + \alpha], 0 < a \le 1$$

$$s \in [s_a, s_u + \alpha], 0 < a \le 1$$
(1.1)

where ${}^{s}D^{a}$ is the S time scale Riemann Liouville fractional derivative of order a.

 $s^{S}I$ the fractional integral of Riemann-Liouville and $[s_{0}, s_{0}+\alpha]_{s}$ is an arbitrary interval on *S*.

As a part of theoretical & potential applications, theory of time lamina calculus is involved to concern together difference and differential equation [1]. suppose that h(s) is a continuous function with right dense. Many authors have tried and proved the life and one-of-a-kindness of the first order differential equations with initial and boundary time scales conditions by various methods and criteria.

The idea of this content arises from reference papers [10-24] in which Krasnoselskii-Krein and Nagumo conditions on non-linear term *h*, excluding Lipschitz assumption are exposed to derive the main results.

Consider the first of the following orders ordinary differential equation with two classes

$$u^{\Delta}(s) = h(s, u(s)) \qquad s \in [s_0, s_0 + \alpha]_s \\ u(s_0) = 0$$

$$(1.2)$$

and fractional differential equation with fractional order

$${}^{s}D^{s}u(s) = h(s,u(s)) \ s \in [s_{0}, s_{0} + \alpha]_{s}$$
 $0 < a \le 1$
 ${}^{s}I^{1-a}u(s_{a}) = 0$ (1.3)

In section 2, few definitions and fundamental statements are added in such a way to prove main results.

In section 3, the main theorem is illustrated. We first set up unique solution for first order problem under Krasnoselskii-Krein conditions. Then we extend the proof to successive approximation, which converge to unique solution.

2. PRELIMINARIES

We recollect basic consequence and definition from time lamina calculus.

A chronometer Let card (S)>=2 is a non-empty closed subset of S. The forward and backward jump operators $\xi, \eta: S \to S$ are respectively defined by

$$\xi(s) = \inf \{t \in S : t > s\}$$

www.ignited.in

$$\eta(s) = \sup\{t \in S : t < s\}$$
 (2.4)

The point $s \in S$ is defined as follows

 $\eta(s) = s$; left dense $\eta(s) < s$; left scattered $\eta(s) = s$; right dense $\eta(s) > s$; right scattered

Let

 $\begin{cases} S^{\kappa} = S \setminus \{\max S\}; \text{ when } S \text{ admits a left scattered maximum} \\ S^{\kappa} = S \qquad ; \text{ otherwise} \end{cases}$

Denote $A_s = A \cap S$. I_S is interval of S, where I is an interval of R.

Definition 2.1. Delta Derivative [1]

Assume $h: S \rightarrow R$ and let $s \in S^{\kappa}$. Define

$$h^{\Delta}(s) = \lim_{t \to s} \frac{h(\xi(t)) - h(s)}{\xi(t) - s}; \quad s \neq \xi(t)$$
(2.5)

provided the limit exist. Here $h^{\wedge(s)}$ is called delta derivative of h at s. Also, h is referred as delta differentiable on S^{κ} provided h^{\wedge} exists for all $s \in s^{\kappa}$. The function $h^{\wedge}: s^{\kappa} \to R$ is called the delta derivative of h on s^{κ} .

Definition 2.2. [6]

A function $h: S \to R$ Only if it is rd-continuous is it considered rd-continuous right dense point continuous in S and its left sided limits exists at left dense points in S. C_{nd} denotes a Banach space with norm and a set of rd-continuous functions. Similarly, a function $h: S \to R$ is called ld-continuous only if it is continuous at left dense point in S. The set of Id-continuous function $h: S \to R$ is represented by C_{ld} . For $h \in C_{nd}$, define $\|h\| = Sup_{nd} |h(s)|$.

Definition 2.3. Delta antiderivative [6]

A function ${}^{H:[\alpha,\beta]_s \to R}$ A function's delta antiderivative is referred to as a function's delta antiderivative. ${}^{H:[\alpha,\beta)_s \to R}$ provided H is continuous on ${}^{[\alpha,\beta]_s}$, delta-differentiable on ${}^{[\alpha,\beta)_s}$ and ${}^{H^\delta(s)=h(s)}$ for all ${}^{s \in [\alpha,\beta)_s}$. Then we define the $\Delta-$ integral on hfrom ${}^{\alpha \text{ to } \beta}$ by

$$\int_{\alpha}^{\beta} h(s) \Delta s \stackrel{\Delta}{=} H(\beta) - H(\alpha) \quad (2.6)$$

Definition 2.4. Fractional integral on time scales [6]

Suppose S is a time scale, $[\alpha,\beta]$ is an interval of S_1 & f is an integrable function on $[\alpha,\beta]$. Let 0 < a < 1. Then the left fractional integral of order a of f is defined by

$${}_{\alpha}^{S} I_{s}^{a} f\left(s\right) = \int_{\alpha}^{s} \frac{\left(s-t\right)^{\alpha-1}}{\Gamma(\alpha)} f\left(t\right) \Delta t \quad ; \tag{2.7}$$

where Γ is a gamma function

Definition 2.5. [Fractional Riemann Liouville Derivative on time Scale]

Let *S* be a time scale, $s \in S, 0 < a < 1$, and $f: S \to R$. And there was the left. Fractional derivative of order Riemann-Liouville *a* of *f* is defined by

$${}^{S}_{a}D^{a}_{s}f(s) = \frac{1}{\Gamma(1-a)} \left[\int_{a}^{s} (s-t)^{-a} f(t) \Delta t \right]^{\Delta}$$
(2.8)

We can use $\int_{s}^{s} I^{a}$ instead of $\int_{s_{0}}^{s} I_{s}^{a}$ and $\int_{s}^{s} I^{a}$ instead of $\int_{s_{0}}^{s} D_{s}^{a}$ when $\alpha = s_{0}$.

Lemma 2.1. Let *h* be a non-decreasing continuous function on the $[\alpha,\beta]_s$. We define extension *h* of *h* to the non-imaginary interval $[\alpha,\beta]$ by

$$\overline{h}(t) = \begin{cases} h(t) \text{ if } t \in S \\ 0 \quad \text{if } t \in (s, \xi(s)) \notin S \end{cases}$$
(2.9)

Then
$$\int_{\alpha}^{\beta} h(s) \Delta s \le \int_{\alpha}^{\beta} \overline{h}(s) \Delta s$$
 (2.10)

 $\overline{h}^{\Delta}(s) = h^{\Delta}(s)$, for every $s \in (\alpha, \beta)_s$.

Lemma 2.2. [5] Let $x:[s_t,s_t+\alpha]_s \to \mathbb{R}$ be continuous. Then the general solution of the differential equation $v^{\Lambda}(s) = x(s)$ is given by (2.11)

$$v(s) = v(s_0) + \int_{s_0}^s x(t) \Delta t, \quad s \in [s_0, s_0 + \alpha]$$
(2.12)

Lemma 2.3. [6] For any function h integrable on $[s_0, s_0 + \alpha]_s$, we have the following

$$\binom{s}{s}D^{a}\cdot \binom{s}{s}I^{a}(h) = h \qquad (2.13)$$

Dr. R. Prahalatha¹* Dr. M. M. Shanmugapriya²

Journal of Advances and Scholarly Researches in Allied Education Vol. 16, Issue No. 11, November-2019, ISSN 2230-7540

Lemma 2.4. [6] Let $h \in C([s_0, s_0 + \alpha]_s) \& 0 < a < 1$. If $s_s^{s_1 I^{1-a}}h(s)|_{s=s_0} = 0$, then

$$\binom{s}{s}I^{a}\cdot \binom{s}{s}D^{a}(h) = h.$$
 (2.14)

Lemma 2.5. [6] Let 0 < a < 1 and $h:[s_0,s_0+\alpha]_s \times R \to R$. The function V is a solution of problem (1.2) if and only if it is a solution of the following integral equation

$$v(s) = \frac{1}{\Gamma(a)} \int_{s_0}^{t} (s-t)^{s-t} h(t, v(t)) \Delta t \quad s \in [s_0, s_0 + \alpha]_s$$
(2.15)

Lemma 2.6. [22] The of the equation

$$_{st}D_{s_0}^{o}R(s) = \left[R(s)\right]^{o}$$
(2.16)

is given by

$$R(s) = L(s - s_0)^{\varepsilon}$$
 (2.17)

where $L=(\Gamma(1-a))^{\frac{1}{1-\sigma}}$ and $\xi=\frac{1}{1-\sigma} \& {}_{\alpha}D_{s_{\alpha}}^{*}$ is the fractional Riemann-Liouville derivative of order $a \in (0,1)$ on the interval $[s_{0},s_{0}+\alpha]$.

3. MAIN RESULTS

To prove the main result, define

$$T_0 = \left\{ \left(s, y\right): \quad s \in \left[s_0, s_0 + \alpha\right], \quad \left|y\right| \le \beta, \quad \alpha, \beta \in \mathbb{R}^+ \right\}.$$

3.1. Results of Uniqueness for first order Ordinary Differential Equation:

Theorem 3.1.1. (Conditions of Krasnoselskii-Krein)

Let h(s,y) be non-discontinuous in T_0 and for all $(s,y), (s,\bar{y}) \in T_0$ satisfying

(A1)
$$|h(s, y) - h(s, \overline{y})| \le k |s - s_0|^{-1} |y - \overline{y}|, s \ne s_0$$

(A2)
$$|h(s, y) - h(s, \overline{y})| \le c |s - s_0|^{-1} |y - \overline{y}|^{\delta}$$
,

for some positive constants *c* and *k*; also the nonimaginary number δ which lies between 0 and 1 such that ${}^{k(1-\delta)<1}$. Then, the first order initial value problem (1.2) has only one solution on $[{}^{s_0,s_0+\alpha}]_{s}$.

Proof:

Suppose *p* and *q* are two solutions of (1.2) in $[s_0,s_0+\alpha]_s$. We have to prove that $p \equiv q$.

Let us define $\psi(s)$ and Q(s) by

$$\psi(s) = |p(s) - q(s)|, \text{ for every } s \in [s_0, s_0 + \alpha]_S$$

$$Q(s) = \int_{s_0}^{s} c \psi^{-\delta}(t) dt \text{ for every } s \in [s_0, s_0 + \alpha]$$
(3.18)

Such that $\overline{\psi}$ is the extension of ψ to the real interval $[s_0, s_0 + \alpha]$. From condition (A2) that

$$w'(s) = \left| \int_{\infty}^{s} \left[h(t, p(t)) - h(t, q(t)) \right] \Delta t \right|$$

$$\leq \int_{\infty}^{s} \left| h(t, p(t)) - h(t, q(t)) \right| \Delta t$$

$$\leq \int_{0}^{s} c \left[p(t) - q(t) \right]^{\delta} \Delta t \leq \int_{0}^{s} c \left[\overline{p}(t) - \overline{q}(t) \right]^{\delta} dt = Q(t)$$
(3.19)

Consequently, since $Q(s_0) = 0$. Q(s) > 0 for $s > s_0$, and $Q^{A}(s) = c\psi^{-s}(s)$, for every $s \in [s_0, s_0 + \alpha]_s$. It is concluded from (3.18) and (3.19) that $Q'(s) \le cQ^{\delta}(s)$, for every

$$s \in [s_0, s_0 + \alpha].$$
 (3.20)

That is $\int (1-\delta)Q^{(1-\delta)}(s)Q'(s)ds \leq \int c(1-\delta)Q^{(1-\delta)}Q^{\delta}(s)ds$. It is reduced to

$$Q^{(1-\delta)}(s) \le c(1-\delta)(s-s_0)$$
 (3.21)

Hence

$$\psi(s) \le c^{(1-\delta)^{-1}} (1-\delta)^{(1-\delta)^{-1}} (s-s_0)^{(1-\delta)^{-1}}$$
(3.22)

Denote $\phi(s) = \frac{\psi(s)}{(s-s_{0})^{t}} \Rightarrow 0 \le \phi(s) \le \frac{(s-s_{0})^{(l-t)^{-1}}}{c^{(l-t)^{-1}}(1-\delta)^{(l-t)^{-1}}}$ for every $s \in [s_{0}, s_{0} + \alpha]_{t}$ (3.23)

That is the exponent of *S* in the above constraint is non-negative, since $\frac{1}{k(1-\delta)}^{>1}$.

Hence $\lim_{s \to s_0} \phi(s) = 0$. Therefore if we define $\phi(s_0) = 0$, then the function is rd-continuous in $[s_0, s_0 + \alpha]_s$. To prove $\psi = 0$ on $[s_0, s_0 + \alpha]_s$. Assume that ϕ does not disappear at some points *s*; that is $\phi(s) > 0$ on $[s_0, s_0 + \alpha]$. Then there arise a maximum n > 0, when *S* equals to some $s_1 : s_0 < s_1 < s_0 + \alpha$ such that $\phi(t) < n < \phi(s_1)$, for $t \in [s_0, s_1)_s$. From condition (A1), we have

$$= \phi(x_{i}) = (x_{i} - x_{0})^{-1} \psi(x_{i})$$

$$\leq (x_{i} - x_{0})^{-1} \int_{-\infty}^{0} k(t - x_{0})^{-1} \psi(t) \Delta t \leq (x_{i} - x_{0})^{-1} \int_{-\infty}^{0} k(t - x_{0})^{t-1} \phi(t) \Delta t \qquad (3.24)$$

$$\leq n(x_{i} - x_{0})^{-1} \int_{-\infty}^{0} k(t - x_{0})^{t-1} \Delta t \leq (x_{i} - x_{0})^{-1} \int_{0}^{0} k(t - x_{0})^{t-1} dt < n_{0}$$

which is a contradiction. Hence, there exist unique solution.

Theorem 3.1.2. Kooi's Condition

Let h(s,y) be non-discontinuous in T_0 and for all $(s,y), (s,\overline{y}) \in T_0$ satisfying

(B1) $|h(s, y) - h(s, \overline{y})| \le k |s - s_0|^{-1} |y - \overline{y}|, s \ne s_0$

(B2) $|s-s_0|^b |h(s,y)-h(s,\overline{y})| \le c |y-\overline{y}|^{\delta}$, for some positive constants *C* and *k* from real line.

Also, real numbers b,δ are defined as $0 < b < \delta < 1$, and $k(1-\delta) < 1-b$. Then the first order initial value problem (1.2) has only one solution on $[s_0, s_0 + \alpha]_s$.

Proof. Similar procedure from theorem 3.1.1 is followed here to prove the given statement.

3.2. Existence of Solution on Time Lamina by Krasnoselskii-Krein Conditions

Theorem 3.2.3. Assume that conditions (A1) and (A2) are satisfied, then the consecutive estimations given by

$$p_{m+1}(s) = \int_{s_0}^{s} h(t, p_m(t)) \Delta t$$
 $p_0(s) = 0, \quad m = 0, 1,$ (3.25)

Converge uniformly to the unique solution p of (1.2) on $[s_0, s_0 + \rho]$, where $\rho = \min\{\alpha, \beta / N\}$, and N is the bound for h on T_0 .

Proof: Since we proved uniqueness in theorem 3.1.1, it is enough to prove existence of solution by Arzela-Ascoli theorem.

Step:1 The consecutive approximations $\{p_{m+1}\}, m=0,1,2,...$ given by (3.25) are well defined and continuous.

$$\left|p_{m+1}(s)\right| = \left|\int_{s_{0}}^{s} h(t, p_{m}(t))\Delta t\right| \le \int_{s_{0}}^{s} \left|h(t, p_{m}(t))\right| \Delta t$$
(3.26)

This gives the following result for

$$m = 0$$
, $|p_1(s)| \le \int_{s_0}^{s} |h(t, p_0(t))| \Delta t \le Ns \le b$ (3.27)

By induction, the sequence ${p_{j+1}(s)}$ is well defined and uniformly bounded on $[s_0, s_0 + \rho]_{s}$.

Step: 2 To prove \mathcal{X} is continuous function in $[s_0, s_0 + \rho]_s$, where \mathcal{X} is defined by

$$x(s) = \limsup |p_j(s) - p_{j-1}(s)|$$
 (3.28)

For

$$s_1, s_2 \in [s_0, s_0 + \rho]_s$$

we have

$$\|p_{j+1}(s_1) - p_j(s_1)\| \le \|p_{j+1}(s_2) - p_j(s_2)\| + 2N|s_2 - s_1|$$
 (3.29)

Also

$$|p_{j+1}(s_1) - p_j(s_1)| - |p_{j+1}(s_2) - p_j(s_2)| \le |p_{j+1}(s_1) - p_j(s_1) - p_{j+1}(s_2) + p_j(s_2)|$$

$$\le \left| \int_{s_1}^{s_2} \left[h(t, p_j(t)) - h(t, p_{j+1}(t)) \right] \Delta t - \int_{s_2}^{s_2} \left[h(t, p_j(t)) - h(t, p_{j+1}(t)) \right] \Delta t \right|$$

$$\le 2N \int_{s_2}^{s_1} \Delta t \le 2N(s_2 - s_1)$$
(3.30)

In (3.29), the right side expression in inequality is at most $X(s_2) + \varepsilon + 2N(s_2 - s_1)$ for large m if $\varepsilon > 0$ provided that $|s_2 - s_1| \le \frac{\varepsilon}{2N}$.

For some arbitrary ${\ensuremath{\mathcal{E}}}$ and interchangeable ${\ensuremath{{\it s}}}_{\mbox{\tiny 1}},{\ensuremath{{\it s}}}_{\mbox{\tiny 2}}$ we get

$$|X(s_1) - X(s_2)| \le 2N(s_2 - s_1)$$
 (3.31)

Hence *X* is continuous on $[s_0, s_0 + \rho]_s$. By condition (A2) and definition of successive approximations, we get

$$|p_{j+1}(s) - p_j(s)| \le c \int_{s_0}^{s} |p_j(t) - p_{j-1}(t)|^o \Delta t$$
(3.32)

The sequence $\{p_m\}$ is equicontinuous: that is $s_1, s_2 \in [s_0, s_0 + \rho]_s$ for each function p_m and some positive \mathcal{E} . If there exist $\gamma = \frac{\mathcal{E}}{N}$ such that $s_2 - s_1 \leq \gamma$, then

$$p_{n+1}(s_{1}) - p_{n+1}(s_{2}) = \left| \int_{s_{1}}^{s} h(t, p_{n}(t)) \Delta t \right| \le \int_{s_{1}}^{s_{2}} |\tilde{h}(t, p_{n}(t))| \Delta t \le N(s_{1} - s_{2}) \le \pi$$

(3.33)

The family ${p_j}$ fulfills all conditions of Arzela Ascoli theorem in $c_{rd}[s_0, s_0 + \rho]_s$. Hence there exists a subsequence ${p_s}$ converging uniformly on $[s_0, s_0 + \rho]_s$ as $j_k \to \infty$. Let us assume

$$n^{*}(s) = \lim_{k \to \infty} |p_{jk}(s) - p_{jk-1}(s)|$$
 (3.34)

If ${|p_j - p_{j-1}|} \rightarrow 0 \text{ as } j \rightarrow \infty$, then the limiting case of any subsequence is the only one solution [unique solution] p of (3.25). It follows that the entire sequence ${p_j}$ converges uniformly to p.

To show that $X \equiv 0.(ie) n^*(s)$ is null. Set

$$Q(s) = \int_{s_1}^{s} X(t)^s dt \qquad (3.35)$$

and by denoting $Q^*(s) = s^{-k}X(s)$. To show that $\lim_{s \to 0^{\sigma}} \phi^*(s) = 0$. Hence $\phi^* \equiv 0$ by absurdity.

Assume that $\phi^*(s) > 0$ for $s \in]s_0, s_0 + \rho]_s$; then there exists s_1 such that

Journal of Advances and Scholarly Researches in Allied Education Vol. 16, Issue No. 11, November-2019, ISSN 2230-7540

$$0 < \overline{n} = \phi^{*}(s_{1}) = \max_{s \in [s_{0}, s_{0} + \rho]_{s}} \phi^{*}(s)$$

By condition (A1),

$$\overline{n} = \phi(s_1) = s_1^{-k} X(s_1) \le \overline{n} s_1 < \overline{n}$$
(3.36)

Which is contradiction. So $\phi^* = 0$. Hence (3.25) converge uniformly to a unique solution ϕ of (1.2) on $[s_0, s_0 + \rho]_s$ by successive approximation.

3.3 Fractional order ODE and its uniqueness of Solution

Theorem 3.3.1. [Conditions of Krasnoselskii-Krein]

Denote $C_{u}\left[\left[s_{0},s_{0}+\alpha\right]_{s},R\right]=\left\{p\mid p\in C\left[\left[s_{0},s_{0}+\alpha\right]_{s},R\right]\right\}$ and $\left(s-s_{0}\right)^{1-\nu}p\in C\left(\left[s_{0},s_{0}+\alpha\right]_{s},R\right).$

Let h(s, y) be continuous in T_0 and satisfying for all $(s, y), (s, \overline{y}) \in T_0$

(C1)
$$|h(s, y) - h(s, \overline{y})| \le kl \Gamma(a)|s - s_0|^{-a}|y - \overline{y}|, s \neq s_0$$

(C2) $|h(s,y)-h(s,\overline{y})| \le c|y-\overline{y}|^{\delta}$ where c,l,k are negative constants such that k > 1, $kl \le a$ and $\frac{1}{k(1-\delta)^{>1}}$, and all real numbers δ lies between 0 and 1. Then the fractional order initial value problem (1.3) has only one solution on $[s_0, s_0 + \alpha]$.

Proof: Suppose *p* and *q* are two solutions of (1.3) in $[s_0, s_0 + \alpha]_{s}$. To show that $p \equiv q$.

To prove the result, define $\psi(s)$ and Q(s) by

$$\psi(s) = |p(s) - q(s)|, \text{ for every } s \in [s_0, s_0 + \alpha]_S$$

$$Q(s) = \frac{c}{\Gamma(\alpha)} \int_{s_0}^{s} (s-t)^{e-1} \psi^{\varepsilon}(t) dt \text{ for every } s \in [s_0, s_0 + \alpha]$$
(3.37)

Such that $\psi^{\hat{\psi}}$ is the extension of Ψ to the real interval $[s_0, s_0 + \alpha]$. From condition (B2), it follows

$$w(s) = \left| \frac{1}{\Gamma(a)} \int_{s_{1}} \left[h(t, p(t)) - h(t, q(t)) \right] \Delta t \right|$$

$$\leq \frac{1}{\Gamma(a)} \int_{s_{1}} \left[h(t, p(t)) - h(t, q(t)) \right] \Delta t \leq \frac{1}{\Gamma(a)} \int_{s_{1}}^{s_{2}} c(s-t)^{s-s} \left| \overline{p}(t) - \overline{q}(t) \right|^{s} dt = Q(s)$$
(3.38)

Also ${}^{s}D^{\alpha}Q(s) = \hat{\psi}^{\delta}(s) = Q^{\delta}(s)$, for every $s \in [s_{0}, s_{0} + \alpha]_{s}$. for every $s \in [s_{0}, s_{0} + \alpha]_{s}$.

By (3.37) and (3.38) and using lemma 2.6, we get for every

$$s \in [s_0, s_0 + \alpha]_s, \ \psi(s) \le Q(s) = L(s - s_0)^c$$
 (3.39)

where L and ξ are defined in lemma 2.6.

Moreover, define

$$\phi(s) = \frac{\psi(s)}{(s-s_0)^k}.$$

We get

$$0 \le \phi(s) \le L(s-s_0)^{\xi-ka}, \qquad (3.40)$$

for every

Hence

 $s \in [s_0, s_0 + \alpha].$

 $\lim_{s\to s_0}\phi(s)=0.$

Therefore, if we define $\phi(s_0)=0$, then the function is rd-continuous in $[s_0, s_0 + \alpha]_s$.

Next to show that $\psi \equiv 0$. Assume contrarily ψ does not disappear at few points S; that is $\psi(s) > 0$ on $]s_0, s_0 + \alpha]_s$. Then there exists a maximum n > 0attained when S is equal to some $s_1 : s_0 < s_1 \le s_0 + \alpha$ such that $\phi(t) < n \le \phi(s_1)$, for $t \in [s_0, s_1]_s$.

By hypothesis (B1), we have

$$n = \phi(s_1) = (s - s_0)^{-k} \psi(s_1)$$

$$n < (s - s_0)^{-k} \int_{s_0}^{k} h(s - t)^{s-1} [h(t, \mu(t)) - h(t, q(t))] \Delta t$$

$$\leq (s_1 - s_0)^{-k} \int_{s_0}^{k} h(s - t)^{s-1} \frac{\psi(t)}{(t - s_0)^{s-k}} \Delta t$$

$$\leq (s_1 - s_0)^{-k} \int_{s_0}^{k} h(s - t)^{s-1} (t - s_0)^{s-k} \phi(t) \Delta t \leq n h d(s_1 - s_0)^{s-1} \int_{s_0}^{t} (s_1 - t)^{s-1} \Delta t$$

$$\leq n h d(s_1 - s_0)^{-k} \int_{s_0}^{k} (s_1 - t)^{s-1} dt \leq \frac{n h d}{a} < n$$
(3.41)

which is contradiction. Hence the solution is unique.

Theorem 3.3.2. Conditions of Kooi's

Let h(s, y) be non-discontinuous in T_0 and for all $(s, y), (s, \bar{y}) \in T_0$ satisfying

(D1) $|h(s,y)-h(s,\overline{y})| \le kl\Gamma(a)|s-s_0|^{-a}|y-\overline{y}|, s \ne s_0$

(D2) $|s-s_0|^{\delta}|h(s,y)-h(s,\overline{y})| \le c |y-\overline{y}|^{\delta}$ for some nonnegative constants c,l and k; also the nonimaginary positive numbers b, δ, k, l are such that $0 < b < \delta < 1$ and $k(1-\delta) < 1-b \& kl \le a$. Then, the first order initial value problem of first order FDE (1.3) has at most one solution on $[s_0, s_0 + \alpha]_{s}$.

www.ignited.in

Existence Results for a System of Fractional Differential Equations with Fractional Order Random Time Scale

Proof: The proof of this theorem is similar to the last theorem 3.3.1.

3.4. Krasnoselskii-Krein Conditions on Time Lamina and Existence of Solution of FDE

Assume that (C1) and (C2) are satisfied; then the consecutive approximation towards solution is given by

$$p_{n+1}(s) = \int h(t, p_n(t)) \Delta t$$
 $p_0(s) = 0, \quad m = 0, 1, 2,$ (3.42)

tends to a finite limit uniformly to the unique solution p of (1.3) on $[s_0, s_0 + \rho]$, where $e^{\rho = \min\left\{\alpha \cdot \left(\frac{\rho T \cdot (1+\alpha)}{N}\right)^{\frac{1}{2}}\right\}}$ and N is the bound for h on T_0 . (3.43)

Proof: Since uniqueness of the solution have been proved by theorem 3.3.1, we have to prove the existence of solution by Arzela Ascoli theorem. The successive approximation $\{p_{m+1}\}, m=0,1,2,...$ given in (3.42) are properly defined and continuous.

$$|p_{min}(t)| = \left|\frac{1}{\Gamma(a)}\int_{-\infty}^{\infty} (x-t)^{n-1} h(t, p_m(t)) \Delta t\right| \le \frac{1}{\Gamma(a)}\int_{-\infty}^{\infty} (x-t)^{n-1} |h(t, p_m(t))| \Delta t$$
 (3.44)
For $n = 0$, $|p_i(x)| \le \frac{N}{\Gamma(a)}\int_{-\infty}^{0} (x-t)^{n-1} \Delta t \le \frac{N}{\Gamma(a)}\int_{-\infty}^{0} (x-t)^{n-1} dt \le \frac{N\alpha^n}{\Gamma(a+1)} \le \beta$ (3.45)

By mathematical induction, the flow of sequence $\{p_{j+1}(s)\}$ is properly defined and uniformly bounded on $[s_0, s_0 + \rho]_s$.

Step: 2 To prove X is continuous function in $[s_0,s_0+\rho]_s$, where X is defined by

$$X(s) = \limsup_{i \to \infty} \sup \left| p_{i}(s) - p_{i-1}(s) \right|$$
 (3.46)

For $s_1, s_2 \in [s_0, s_0 + \rho]_s$, we have

$$|p_{j+1}(s_1) - p_j(s_1)| \le |p_{j+1}(s_2) - p_j(s_2)| + \frac{4N}{\Gamma(a+1)}(s_2 - s_1)^{\alpha}$$
(3.47)

That is

$$\begin{split} \left| p_{j+1}(x_{t}) - p_{j}(x_{t}) \right| &- \left| p_{j+1}(x_{2}) - p_{j}(x_{2}) \right| \leq \left| p_{j+1}(x_{t}) - p_{j}(x_{t}) - p_{j+1}(x_{2}) + p_{j}(x_{2}) \right| \\ &\leq \frac{1}{\Gamma(a)} \left| \int_{t_{t}}^{t_{t}} (x_{t} - t)^{a+1} \left[h(t, p_{j}(t)) - h(t, p_{j+1}(t)) \right] \Delta t - \\ &- \int_{u}^{t_{t}} (x_{2} - t)^{a+1} \left[h(t, p_{j}(t)) - h(t, p_{j-1}(t)) \right] \Delta t \right| \\ &- \int_{u}^{t_{t}} (x_{2} - t)^{a+1} \left[h(t, p_{j}(t)) - h(t, p_{j-1}(t)) \right] \Delta t \right| \\ &\leq \frac{2N}{\Gamma(a)} \left[\int_{u}^{t_{t}} \left((x_{t} - t)^{a+1} - (x_{2} - t)^{a+1} \right) \Delta t - \int_{t_{t}}^{t_{t}} (x_{2} - t)^{a+1} \Delta t \right] \\ &\leq \frac{2N}{\Gamma(a)} \left[\int_{u}^{t_{t}} \left((x_{1} - t)^{a+1} - (x_{2} - t)^{a+1} \right) dt - \int_{t_{t}}^{t_{t}} (x_{2} - t)^{a+1} dt \right] \\ &\leq \frac{2N}{a\Gamma(a)} \left[\int_{u}^{t_{t}} \left((x_{1} - t)^{a+1} - (x_{2} - t)^{a+1} \right) dt - \int_{t_{t}}^{t_{t}} (x_{2} - t)^{a+1} dt \right] \\ &\leq \frac{2N}{a\Gamma(a)} \left[\int_{u}^{t} \left((x_{1} - t)^{a+1} - (x_{2} - t)^{a+1} \right) dt - \int_{t_{t}}^{t_{t}} (x_{2} - t)^{a+1} dt \right] \\ &\leq \frac{2N}{a\Gamma(a)} \left[\int_{u}^{t} \left((x_{1} - t)^{a+1} - (x_{2} - t)^{a+1} \right) dt - \int_{t_{t}}^{t_{t}} (x_{2} - t)^{a+1} dt \right] \\ &\leq \frac{2N}{a\Gamma(a)} \left[\int_{u}^{t} \left(x_{1} - t \right)^{a+1} - \left(x_{2} - t \right)^{a+1} \right] dt - \int_{t_{t}}^{t_{t}} \left(x_{1} - t \right)^{a+1} dt \right] \\ &\leq \frac{2N}{a\Gamma(a)} \left[\left[x_{1}^{u} - x_{2}^{u} + 2(x_{2} - x_{1})^{u} \right] dt - \int_{t_{t}}^{t_{t}} \left(x_{1} - x_{1} \right)^{u} dt \right] \\ &\leq \frac{2N}{a\Gamma(a)} \left[\left[x_{1}^{u} - x_{2}^{u} + 2(x_{2} - x_{1})^{u} \right] dt - \int_{t_{t}}^{t_{t}} \left(x_{1} - x_{1} \right)^{u} dt \right] \\ &\leq \frac{2N}{a\Gamma(a)} \left[\left[x_{1}^{u} - x_{2}^{u} + 2(x_{2} - x_{1})^{u} \right] dt - \int_{t_{t}}^{t_{t}} \left(x_{1} - x_{1} \right)^{u} dt \right] \\ &\leq \frac{2N}{a\Gamma(a)} \left[\left[x_{1}^{u} - x_{2}^{u} + 2(x_{2} - x_{1})^{u} \right] dt - \int_{t_{t}}^{t_{t}} \left(x_{1} - x_{1} \right)^{u} dt \right] \\ &\leq \frac{2N}{a\Gamma(a)} \left[x_{1}^{u} - x_{2}^{u} + 2(x_{2} - x_{1})^{u} \right] \\ &\leq \frac{2N}{a\Gamma(a)} \left[x_{1}^{u} + x_{2}^{u} + 2(x_{2} - x_{1})^{u} \right] \\ &\leq \frac{2N}{a\Gamma(a)} \left[x_{1}^{u} + x_{2}^{u} +$$

The right side of inequality (3.47) is at most

$$\frac{1}{|s_2|-z_1|} \left[\frac{z_N}{1(s-1)} \left[s_2-s_1\right]\right]$$
 for large
m if $\varepsilon > 0$ given that $|s_2 - s_1| \le \left[\frac{\varepsilon \Gamma(a+1)}{4N}\right]^{\frac{1}{a}}$.

Since ${\mathcal E}$ is arbitrary and ${}^{\mathcal{S}_1,\,\mathcal{S}_2}$ can be interchangeable, then

$$|X(s_1) - X(s_2)| \le \frac{4N}{\Gamma(a+1)}(s_2 - s_1).$$
 (3.49)

That is *X* continuous on $[s_0, s_0 + \rho]_s$.

By condition (C2) and the definition consecutive

approximations, we get

$$|p_{j+1}(s) - p_j(s)| \le \frac{c}{\Gamma(a)} \int_{t_0}^{t_0} \left[|p_j(t) - p_{j-1}(t)|^{\alpha} \right] \Delta t$$
 (3.50)

therefore the sequence $\{p_m\}$ is equicontinuous. For each function p_m and $\varepsilon > 0$, $s_1, s_2 \in [s_0, s_0 + \rho]_s$. If there exists $\gamma = \frac{\varepsilon^{-a} \Gamma(a+1)}{N} \ni s_2 - s_1 \le \gamma$; $|p_{mi1}(s_1) - p_{mi1}(s_2)| \le \frac{2N}{\Gamma(a+1)}(s_1 - s_2)^s \le \varepsilon$.

Let us denote $n^*(s) = \lim_{k \to \infty} |p_{j_k}(s) - p_{j_{k-1}}(s)|$. Further, if $\{|p_j - p_{j_{j-1}}|\} \to 0$ as $j \to \infty$, then the limiting case of any subsequence is the unique solution p of (3.42).

Let $Q(s) = \frac{c}{\Gamma(a)} \int_{s_0}^{s} (s-t)^{s^{-1}} X(t)^s dt$ and define $\phi^*(s) = s^{-k} X(s)$ and then using lemma 2.6, we get that $\phi(s) \le L(s_1 - s_0)^{j-ka}$ which gives that $\lim_{s \to 0^+} \phi^*(s) = 0$. And also proved that $\phi^* \equiv 0$ by absurdity. presume that $\phi^*(s) > 0$ at any point in $[s_0, s_0 + \rho]_s$; then there exist S_1 such that $0 < \overline{n} = \phi^*(s_1) = \max_{s_1 \in [s_0, s_0 + \rho]_s} \phi^*(s)$. For condition (C1), we obtain

$$u = \phi(s_1) = (s_1 - s_0)^{-\delta x} \psi(s_1) \le (s_1 - s_0)^{-\delta x} \int_{s_0}^{s_0} kl(s_1 - t)^{s-1} (t - s_0)^{-\delta} \psi(t) dt$$
$$u \le kl(s_1 - s_0)^{-\delta x} \int_{s_0}^{s_0} (s_1 - t)^{s-1} (t - s_0)^{\delta - x} \phi(t) dt < kln(s_1 - s_0)^{-\delta} \int_{s_0}^{s_0} (s_1 - s_0)^{s-1} dt < \frac{kln}{a} < n.$$

this is an inconsistency. (i.e.) $\phi^* = 0$. Hence Picard's successive approximation (3.42) tends to finite limit (uniform convergence) to unique solution p of (1.2) on $[s_0, s_0 + \rho]_{s}$.

CONCLUSION

Hence, we can establish the solution of non-linear FDE with order $a \in (0,1]$ by few basic named conditions.

Journal of Advances and Scholarly Researches in Allied Education Vol. 16, Issue No. 11, November-2019, ISSN 2230-7540

REFERENCES

- R. P. Agarwal and M. Bohner (1999). "Basic calculus on time scales and some of its applications," Results in Mathematics, vol. 35, no. 1-2, pp. 3-22.
- [2] M. Bohner and A. Peterson (2001). Dynamic Equations on Time Scales, Birkhäuser, Boston, Mass, USA.
- [3] M. Bohner and A. Peterson, Eds. (2003). Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, Mass, USA.
- [4] G. S. Guseinov (2003). "Integration on time scales," Journal of Mathematical Analysis and Applications, vol. 285, no. 1, pp. 107-127.
- [5] G. S. Guseinov and B. Kaymakçalan (2002).
 "Basics of Riemann delta and nabla integration on time scales." Journal of Difference Equations and Applications, vol. 8, no. 11, pp. 10011017.
- [6] N. Benkhettou, A. Hammoudi, and D. E M. Torres, "Existence and uniqueness of solution for a fractional riemann-liouville initial value problem on time scales." Journal of King Saud University-Science, vol. 28, no. 1, pp. 87-92, 2016.
- [7] A. Chidouh, A. Guezane-Lakoud, and R. Bebbouchi (2016). "Positive solutions for an oscillator fractional initial value problem," Journal of Applied Mathematics and Computing.
- [8] A. Chidouh, A. Guezane-Lakoud, and R. Bebbouchi (2016). "Positive solutions of the fractional relaxation equation using lower and upper solutions," Vietnam Journal of Mathematics.
- [9] A. Guezane-Lakoud (2015). "Initial value problem of fractional order. "Cogent Mathematics, vol. 2, no. 1, Article ID 1004797.
- [10] A. Guezane-Lakoud and R. Khaldi (2012). "Solvability of a fractional boundary value problem with fractional integral condition,"Nonlinear Analysis: Theory, Methods & Applications, vol. 75, no.4, pp. 2692-2700.
- A. Guezane Lakoud and R. Khaldi (2012).
 "Solvability of a three-point fractional nonlinear boundary value problem." Differential Equations and Dynamical Systems, vol. 20, no. 4, pp. 395-403.

- [12] A. Guezane-Lakoud and A. Kiliçman (2014).
 "Unbounded solution for a fractional boundary value problem," Advances in Difference Equations, vol. 2014, article 154.
- [13] A. Souahi, A. Guezane-Lakoud, and A. Hitta (2016). "On the existence and uniqueness for high order fuzzy fractional differential equations with uncertainty" Advances in Fuzzy Systems, vol. 2016, Article ID 5246430, 9 pages, 2016.
- [14] I. L. dos Santos (2015). "On qualitative and quantitative results for solutions to first-order dynamic equations on time scales," Boletin de la Sociedad Matemática Mexicana, vol. 21, no. 2, pp.205-218.
- [15] R. A. C. Ferreira (2013). "A Nagumo-type uniqueness result for an nth order differential equation," Bulletin of the London Mathematical Society, vol. 45, no. 5, pp. 930-934.
- [16] M. A. Krasnosel'skii and S. G. Krein (1956). "On a class of uniqueness theorems for the equation $\acute{y} = f(x,y)$ " Uspekhi Matematicheskikh Nauk, vol. 11, no. 1(67), pp. 209-213.
- [17] R.Prahalatha and M.M. Shanmugapriya (2017). Existence of Solution of GlobalCauchy Problem for Some Fractional Abstract Differential Equation. InternationalJournal of pure and Applied Mathematics, 116(22): pp. 163-174.
- [18] R.Prahalatha and M.M. Shanmugapriya (2017). Existence of Extremal Solution for Integral Boundary Value Problem of Non Linear Fractional Differential Equations. International Journal of pure and Applied Mathematics, 116(22): pp. 175-185.
- [19] R.Prahalatha and M.M. Shanmugapriya (2019). Controllability Results of Impulsive Integrodifferential Systems with Fractional Order and Global Conditions, Journal of Emerging Technologies and Innovative Research (JETIR), 6 (6): pp. 626-643.
- [20] S. Suganya, M. Mallika Arjunan, J.J. Trujillo (2015). Existence results for an impulsive fractional integro-differential equation with state-dependent delay, Applied Mathematics and Computation, Volume 266, Pages 54-69.
- [21] S. Suganya, Mallika Arjunan M. (2017). Existence of Mild Solutions for Impulsive Fractional Integro-Differential Inclusions with State-Dependent Delay. Mathematics;

Dr. R. Prahalatha¹* Dr. M. M. Shanmugapriya²

www.ignited.in

9.

5(1): pp. https://doi.org/10.3390/math5010009

- [22] V. Lakshmikantham and S. Leela (2009). "A Krasnoselskii-KREin-type uniqueness result for fractional differential equations."Nonlinear Analysis: Theory, Methods e Applications, vol. 71, no.7-8, pp. 3421-3424.
- [23] E. Yoruk, T. G. Bhaskar, and R. P. Agarwal "New uniqueness results for (2013). fractional differential equations," Applicable Analysis, vol. 92, no. 2, pp. 259-269.
- [24] S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993). Fractional Integrals and Derivatives, Gordon and Breach Science Publishers, Yverdon, Switzerland, Theory and Applications, Edited and with a foreword by S. M. Nikol'skir, Translated from the 1987 Russian Original.

Corresponding Author

Dr. R. Prahalatha*

Assistant Professor, PG Department of Mathematics, Vellalar College for Women (Autonomous)

prahalathav@gmail.com