Existence Results for a System of Fractional Differential Equations with Fractional Order Random Time Scale

Dr. R. Prahalatha ${ }^{1 *}$ Dr. M. M. Shanmugapriya ${ }^{2}$
${ }^{1}$ Assistant Professor, PG Department of Mathematics, Vellalar College for Women (Autonomous)
${ }^{2}$ Assistant Professor \& Head, Department of Mathematics, Karpagam Academy of Higher Education

Abstract

This paper explores the extant of unique solution for a set of non-linear fractional differential equation with fractional order in capricious time lamina. The solutions are demonstrated by some basic fixed-point theory, Kooi's, Rogers and Krasnoselskii-Krein conditions

Keywords - Fractional Impulsive Differential Equations, Initial Value Problem, Fixed Point Theorem.

INTRODUCTION

Consider the fractional differential equations with initial conditions as given below

where ${ }^{s} D^{a}$ is the S time scale Riemann Liouville fractional derivative of order a.
${ }_{s}^{s}$ I the fractional integral of Riemann-Liouville and $\left[s_{s}, s_{0}+\alpha\right]_{s}$ is an arbitrary interval on S.

As a part of theoretical \& potential applications, theory of time lamina calculus is involved to concern together difference and differential equation [1]. suppose that $h(s)$ is a continuous function with right dense. Many authors have tried and proved the life and one-of-a-kindness of the first order differential equations with initial and boundary time scales conditions by various methods and criteria.

The idea of this content arises from reference papers [10-24] in which Krasnoselskii-Krein and Nagumo conditions on non-linear term h, excluding Lipschitz assumption are exposed to derive the main results.

Consider the first of the following orders ordinary differential equation with two classes

$$
\left.\begin{array}{l}
u^{\Delta}(s)=h(s, u(s)) \quad s \in\left[s_{0}, s_{0}+\alpha\right]_{s} \tag{1.2}\\
u\left(s_{0}\right)=0
\end{array}\right\}
$$

and fractional differential equation with fractional order

$$
\left.\begin{array}{ll}
D^{\prime} u(s)=h(s, u(s)) & x \in\left[s_{0}, s_{s}+\alpha\right]_{s} \tag{1.3}\\
y^{\prime} 1-\alpha u\left(s_{0}\right)=0 & 0<a \leq 1 \\
\hline
\end{array}\right\}
$$

In section 2, few definitions and fundamental statements are added in such a way to prove main results.

In section 3, the main theorem is illustrated. We first set up unique solution for first order problem under Krasnoselskii-Krein conditions. Then we extend the proof to successive approximation, which converge to unique solution.

2. PRELIMINARIES

We recollect basic consequence and definition from time lamina calculus.

A chronometer Let card (S)>=2 is a non-empty closed subset of S. The forward and backward jump operators $\xi, \eta: S \rightarrow S$ are respectively defined by

$$
\xi(s)=\inf \{t \in S: t>s\}
$$

$$
\begin{equation*}
\eta(s)=\sup \{t \in S: t<s\} \tag{2.4}
\end{equation*}
$$

The point $s \in S$ is defined as follows
$\eta(s)=s$; left dense $\quad \eta(s)<s$; left scattered $\eta(s)=s$; right dense $\eta(s)>s$; right scattered

Let
$\begin{cases}S^{\kappa}=S \backslash\{\max S\} & ; \text { when } S \text { admits a left scattered maximum } \\ S^{\kappa}=S & ; \text { otherwise }\end{cases}$

Denote $A_{s}=A \cap S$. I_{S} is interval of S, where I is an interval of R.

Definition 2.1. Delta Derivative [1]

Assume $h: S \rightarrow R$ and let $s \in S^{\kappa}$. Define

$$
\begin{equation*}
h^{\Delta}(s)=\lim _{t \rightarrow s} \frac{h(\xi(t))-h(s)}{\xi(t)-s} ; s \neq \xi(t) \tag{2.5}
\end{equation*}
$$

provided the limit exist. Here $h^{h^{\Delta}(s)}$ is called delta derivative of h at s. Also, h is referred as delta differentiable on S^{κ} provided h^{Δ} exists for all $s \in s^{\kappa}$. The function $h^{\Delta}: s^{\kappa} \rightarrow R$ is called the delta derivative of h on s^{k}.

Definition 2.2. [6]
A function $h: S \rightarrow R$ Only if it is rd-continuous is it considered rd-continuous right dense point continuous in S and its left sided limits exists at left dense points in $S . C_{r d}$ denotes a Banach space with norm and a set of rd-continuous functions. Similarly, a function $h: S \rightarrow R$ is called Id-continuous only if it is continuous at left dense point in S. The set of Idcontinuous function $h: S \rightarrow R$ is represented by $C_{l d}$. For $h \in C_{n t}$, define $\|h\|=S u p_{n t}|h(s)|$.

Definition 2.3. Delta antiderivative [6]
A function ${ }^{H:[\alpha, \beta]_{s} \rightarrow R}$ A function's delta antiderivative is referred to as a function's delta antiderivative. ${ }^{H:[\alpha, \beta)_{s} \rightarrow R}$ provided H is continuous on $[\alpha, \beta]_{s}$, delta-differentiable on $[\alpha, \beta)_{s}$ and $H^{\delta}(s)=h(s)$ for all $s \in[\alpha, \beta)_{s}$. Then we define the Δ - integral oh h from ${ }^{\alpha}$ to β by

$$
\begin{equation*}
\int_{\alpha}^{\beta} h(s) \Delta s=H(\beta)-H(\alpha) \tag{2.6}
\end{equation*}
$$

Definition 2.4. Fractional integral on time scales [6]
Suppose S is a time scale, ${ }^{[\alpha, \beta]}$ is an interval of $S_{1} \&$ f is an integrable function on $[\alpha, \beta]$. Let $0<a<1$. Then the left fractional integral of order a of f is defined by

$$
\begin{equation*}
{ }_{\alpha}^{s} I_{s}^{a} f(s)=\int_{\alpha}^{s} \frac{(s-t)^{\alpha-1}}{\Gamma(a)} f(t) \Delta t ; \tag{2.7}
\end{equation*}
$$

where Γ is a gamma function
Definition 2.5. [Fractional Riemann Liouville Derivative on time Scale]

Let S be a time scale, $s \in S, 0<a<1$, and $f: S \rightarrow R$. And there was the left. Fractional derivative of order Riemann-Liouville a of f is defined by

$$
\begin{equation*}
{ }_{a}^{s} D_{s}^{a} f(s)=\frac{1}{\Gamma(1-a)}\left[\int_{a}^{s}(s-t)^{-\alpha} f(t) \Delta t\right]^{\Lambda} \tag{2.8}
\end{equation*}
$$

We can use ${ }^{S} I^{a}$ instead of ${ }_{s_{0}}^{S} I_{s}^{a}$ and ${ }_{s}^{S} I^{a}$ instead of ${ }_{s_{0}}^{S} D_{s}{ }^{a}$ when $\alpha=s_{0}$.

Lemma 2.1. Let h be a non-decreasing continuous function on the $[\alpha, \beta]_{s}$. We define extension h of h to the non-imaginary interval ${ }^{[\alpha, \beta]}$ by

$$
\begin{align*}
& \quad \bar{h}(t)=\left\{\begin{array}{lll}
h(t) & \text { if } t \in S \\
0 & \text { if } t \in(s, \xi(s)) \notin S
\end{array}\right. \tag{2.9}\\
& \text { Then } \int_{a}^{\beta} h(s) \Delta s \leq \int_{a}^{\beta} \bar{h}(s) \Delta s \tag{2.10}
\end{align*}
$$

$\bar{h}^{\Delta}(s)=h^{\Delta}(s)$, for every $s \in(\alpha, \beta)_{s}$.
Lemma 2.2. [5] Let $x:\left[x_{s} . s_{i}+\alpha\right]_{s} \rightarrow K$ be continuous. Then the general solution of the differential equation $v^{\wedge}(s)-x(s)$ is given by (2.11)

$$
\begin{equation*}
v(s)=v\left(s_{0}\right)+\int_{s_{0}}^{x} x(t) \Delta t, \quad s \in\left[s_{0}, s_{0}+\alpha\right] \tag{2.12}
\end{equation*}
$$

Lemma 2.3. [6] For any function h integrable on $\left[s_{0}, s_{0}+\alpha\right]_{s}$, we have the following

$$
\begin{equation*}
\left({ }_{s}^{s} D^{a} \cdot{ }_{s}^{s} I^{a}\right)(h)=h \tag{2.13}
\end{equation*}
$$

Lemma 2.4. [6] Let $h \in C\left(\left[s_{0}, s_{0}+\alpha\right]_{s}\right) \& 0<a<1$. If $\left.{ }_{s}^{s} 1^{1-\alpha} h(s)\right|_{s=s_{0}}=0$, then

$$
\begin{equation*}
\left({ }_{x}^{s} I^{a} \cdot{ }_{,}^{s} D^{a}\right)(h)=h . \tag{2.14}
\end{equation*}
$$

Lemma 2.5. [6] Let $0<a<1$ and $h:\left[s_{0}, s_{0}+\alpha\right]_{s} \times R \rightarrow R$. The function v is a solution of problem (1.2) if and only if it is a solution of the following integral equation
$v(s)=\frac{1}{\Gamma(a)} \int^{s}(s-t)^{-1} h(t, v(t)) \Delta s \quad s \in\left[s_{0}, s_{0}+\alpha\right]_{s}$

Lemma 2.6. [22] The of the equation
${ }_{n k} D_{\mathrm{s}}^{o} R(s)=[R(s)]^{\sigma}$
is given by

$$
\begin{equation*}
R(s)=L\left(s-s_{0}\right)^{\xi} \tag{2.17}
\end{equation*}
$$

where $\quad L=(\Gamma(1-a))^{\frac{1}{-\sigma}}$ and $\xi=\frac{1}{1-\delta} \&{ }_{R L} D_{*}^{D_{0}^{*}}$ is the fractional Riemann-Liouville derivative of order ${ }^{a \in(0,1)}$ on the interval $\left[s_{0}, s_{0}+\alpha\right]$.

3. MAIN RESULTS

To prove the main result, define
$T_{0}=\left\{(s, y): \quad s \in\left[s_{0}, s_{0}+\alpha\right], \quad|y| \leq \beta, \quad \alpha, \beta \in R^{+}\right\}$.
3.1. Results of Uniqueness for first order Ordinary Differential Equation:

Theorem 3.1.1. (Conditions of Krasnoselskii-Krein)
Let $h(s, y)$ be non-discontinuous in T_{0} and for all $(s, y),(s, \bar{y}) \in T_{0}$ satisfying
(A1) $|h(s, y)-h(s, \bar{y})| \leq k\left|s-s_{0}\right|^{-1}|y-\bar{y}|, s \neq s_{0}$
(A2) $|h(s, y)-h(s, \bar{y})| \leq c\left|s-s_{0}\right|^{-1}|y-\bar{y}|^{3}$,
for some positive constants c and k; also the nonimaginary number δ which lies between 0 and 1 such that $k(1-\delta)<1$. Then, the first order initial value problem (1.2) has only one solution on $\left[s_{0}, s_{0}+\alpha\right]_{s}$.

Proof:

Suppose p and q are two solutions of (1.2) in $\left[s_{o}, s_{o}+\alpha\right]_{s}$. We have to prove that $p \equiv q$.

Let us define ${ }^{\psi(s)}$ and $Q(s)$ by

$$
\left.\begin{array}{l}
\psi(s)=|p(s)-q(s)|, \text { for every } s \in\left[s_{0}, s_{0}+\alpha\right]_{s} \tag{3.18}\\
Q(s)=\int_{40}^{\prime} c \psi^{-\alpha}(t) d t \text { for every } s \in\left[s_{0}, s_{0}+\alpha\right]
\end{array}\right\}
$$

Such that $\bar{\psi}$ is the extension of ψ to the real interval $\left[s_{0}, s_{0}+\alpha\right]$. From condition (A2) that

$$
\begin{align*}
\psi(s)= & \left|\int[h(t, p(t))-h(t, q(t))] \Delta t\right| \\
& \leq \int^{n} \mid h(t, p(t))-h(t, q(t) \mid \Delta t \tag{3.19}\\
& \left.\leq \int c \mid p(t)-q(t)\right)^{4} \Delta t \leq \int c|\bar{p}(t)-\bar{q}(t)|{ }^{s} d t=Q(t)
\end{align*}
$$

Consequently, since $Q\left(s_{0}\right)=0, Q(s)>0$ for $s>s_{0}$, and $Q^{A}(s)=c \psi^{-s}(s)$, for every $s \in\left[s_{0}, s_{0}+\alpha\right]_{s}$. It is concluded from (3.18) and (3.19) that $Q^{\prime}(s) \leq c Q^{s}(s)$, for every

$$
\begin{equation*}
s \in\left[s_{0}, s_{0}+\alpha\right] . \tag{3.20}
\end{equation*}
$$

That is $\int(1-\delta) Q^{(-s)}(s) Q^{\prime}(s) d s \leq \int c(1-\delta) Q^{(1-s)} Q^{s}(s) d s$. It is reduced to

$$
\begin{equation*}
Q^{(1-\sigma)}(s) \leq c(1-\delta)\left(s-s_{0}\right) \tag{3.21}
\end{equation*}
$$

Hence

$$
\begin{align*}
& \psi(s) \leq c^{(1-\delta)^{-1}}(1-\delta)^{(1-\delta)^{-1}}\left(s-s_{0}\right)^{(1-\delta)^{-1}} \tag{3.22}
\end{align*}
$$

That is the exponent of S in the above constraint is non-negative, since $e^{\frac{1}{k(1-\delta)}>1}$.

Hence $\lim _{\substack{\rightarrow \rightarrow_{0}}} \phi(s)=0$. Therefore if we define $\phi\left(s_{0}\right)=0$, then the function is rd-continuous in $\left[s_{0}, s_{0}+\alpha\right]_{s}$. To prove $\psi=0$ on $\left[s_{0}, s_{0}+\alpha\right]_{s}$. Assume that ϕ does not disappear at some points s; that is $\phi(s)>0$ on $\left[s_{0}, s_{0}+\alpha\right]$. Then there arise a maximum $n>0$, when S equals to some $s_{1}: s_{0}<s_{1}<s_{0}+\alpha$ such that $\phi(t)<n<\phi\left(s_{1}\right)$, for $t \in\left[s_{0}, s_{1}\right)_{s}$. From condition (A1), we have

```
\(n=\phi\left(x_{1}\right)=\left(x_{1}-x_{0}\right)^{-1} p\left(x_{1}\right)\)
    \(\left.s\left(s_{1}-s_{0}\right)^{-1} \int k\left(t-s_{2}\right)^{-1} w(t) \Delta t \leq\left(s_{1}-x_{0}\right)^{-}\right] k\left(t-s_{5}\right)^{-1} \phi(t) \Delta t \quad[3.24]\)
```


which is a contradiction. Hence, there exist unique solution.

Theorem 3.1.2. Kooi's Condition
Let $h(s, y)$ be non-discontinuous in T_{0} and for all $(s, y),(s, \bar{y}) \in T_{0}$ satisfying
(B1) $|h(s, y)-h(s, \bar{y})| \leq k\left|s-s_{0}\right|^{-1}|y-\bar{y}|, s \neq s_{0}$
(B2) $\left|s-s_{0}\right|^{b}|h(s, y)-h(s, \bar{y})| \leq c|y-\bar{y}|^{\delta}$, for some positive constants c and k from real line.

Also, real numbers b, δ are defined as $0<b<\delta<1$, and $k(1-\delta)<1-b$. Then the first order initial value problem (1.2) has only one solution on $\left[s_{0}, s_{0}+\alpha\right]_{s}$.

Proof. Similar procedure from theorem 3.1.1 is followed here to prove the given statement.

3.2. Existence of Solution on Time Lamina by Krasnoselskii-Krein Conditions

Theorem 3.2.3. Assume that conditions (A1) and (A2) are satisfied, then the consecutive estimations given by

$$
\begin{equation*}
p_{a+1}(s)=\int h\left(t, p_{*}(t)\right) \Delta t \quad p_{0}(s)=0, \quad m=0,1, \ldots \ldots \tag{3.25}
\end{equation*}
$$

Converge uniformly to the unique solution p of (1.2) on $\left[s_{0}, s_{0}+\rho\right]$, where $\rho=\min \{\alpha, \beta / N\}$, and N is the bound for h on T_{0}.

Proof: Since we proved uniqueness in theorem 3.1.1, it is enough to prove existence of solution by Arzela-Ascoli theorem.

Step:1 The consecutive approximations $\left\{p_{m+1}\right\}, m=0,1,2, \ldots$ given by (3.25) are well defined and continuous.

$$
\begin{equation*}
\left|p_{m+1}(s)\right|=\left|\int_{k}^{h} h\left(t, p_{\sigma}(t)\right) \Delta t\right| \leq \int_{i}^{n} h\left(t, p_{\sigma}(t)\right) \Delta t \tag{3.26}
\end{equation*}
$$

This gives the following result for

$$
\begin{equation*}
m=0,\left|p_{1}(s)\right| \leq \int_{1}^{x}\left|h\left(t, p_{0}(t)\right)\right| \Delta t \leq N s \leq b \tag{3.27}
\end{equation*}
$$

By induction, the sequence $\left\{p_{j+1}(s)\right\}$ is well defined and uniformly bounded on $\left[s_{0}, s_{0}+\rho\right]_{s}$.

Step: 2 To prove ${ }^{X}$ is continuous function in ${ }_{\left[s, o, s_{0}+\rho\right]_{s}}$, where x is defined by

$$
\begin{equation*}
x(s)=\lim _{j \rightarrow \infty} \sup \left|p_{j}(s)-p_{j-1}(s)\right| \tag{3.28}
\end{equation*}
$$

For

$$
s_{1}, s_{2} \in\left[s_{0}, s_{0}+\rho\right]_{S}
$$

we have

$$
\begin{equation*}
\left|\left|p_{j+1}\left(s_{1}\right)-p_{j}\left(s_{1}\right)\right| \leq\left|p_{i+1}\left(s_{2}\right)-p_{j}\left(s_{2}\right)\right|+2 N\right| s_{2}-s_{1} \mid \tag{3.29}
\end{equation*}
$$

Also
$\left|p_{j+1}\left(s_{1}\right)-p_{j}\left(s_{i}\right)\right|-\left|p_{j+1}\left(s_{2}\right)-p_{j}\left(s_{2}\right)\right| \leq\left|p_{j+1}\left(s_{1}\right)-p_{j}\left(s_{1}\right)-p_{j+1}\left(s_{2}\right)+p_{j}\left(s_{3}\right)\right|$

$$
\begin{align*}
& \leq\left|\int\left[h\left(t, p_{l}(t)\right)-h\left(t, p_{t-1}(t)\right)\right] \Delta t-\int\left[h\left(t, p_{i}(t)\right)-h\left(t, p_{p-1}(t)\right)\right] \Delta t\right| \tag{3.30}\\
& \leq 2 N \mid \Delta t \leq 2 N\left(s_{1}-s_{1}\right)
\end{align*}
$$

In (3.29), the right side expression in inequality is at most $X\left(s_{2}\right)+\varepsilon+2 N\left(s_{2}-s_{1}\right)$ for large m if $\varepsilon>0$ provided that ${ }^{\left|s_{2}-s_{1}\right| \frac{\varepsilon}{2 N}}$

For some arbitrary ε and interchangeable s_{1}, s_{2} we get

$$
\left|X\left(s_{1}\right)-X\left(s_{2}\right)\right| \leq 2 N\left(s_{2}-s_{1}\right)
$$

Hence X is continuous on $\left[s_{0}, s_{0}+\rho\right]_{S}$. By condition (A2) and definition of successive approximations, we get

$$
\begin{equation*}
\left|p_{j+1}(s)-p_{j}(s)\right| \leq c \int_{4}\left|p_{j}(t)-p_{j-1}(t)\right|^{a} \Delta t \tag{3.32}
\end{equation*}
$$

The sequence $\left\{p_{m}\right\}$ is equicontinuous: that is $s_{1}, s_{2} \in\left[s_{0}, s_{0}+\rho\right]_{s}$ for each function p_{m} and some positive \mathcal{E}. If there exist ${ }^{\gamma=\frac{\varepsilon}{N}}$ such that $s_{2}-s_{1} \leq \gamma$, then

The family $\left\{p_{j}\right\}$ fulfills all conditions of Arzela Ascoli theorem in $c_{r t}\left[s_{0}, s_{0}+\rho\right]_{s}$. Hence there exists a subsequence $\left\{p_{k}\right\}$ converging uniformly on $\left[s_{s, s}, s_{0}+\rho\right]_{s} a s j_{k} \rightarrow \infty$. Let us assume

$$
\begin{equation*}
n^{\prime}(s)=\lim _{k \rightarrow \infty}\left|p_{j k}(s)-p_{j k-1}(s)\right| \tag{3.34}
\end{equation*}
$$

If $\left\{\left|p_{j}-p_{j-1}\right|\right\} \rightarrow 0$ as $j \rightarrow \infty$, then the limiting case of any subsequence is the only one solution [unique solution] p of (3.25). It follows that the entire sequence $\left\{p_{i}\right\}$ converges uniformly to p.

To show that $X \equiv 0$.(ie) $n^{*}(s)$ is null. Set

$$
\begin{equation*}
Q(s)=\int_{t}^{x} X(t)^{a} d t \tag{3.35}
\end{equation*}
$$

and by denoting $Q^{*}(s)=s^{-k} X(s)$. To show that $\lim _{s \rightarrow 0^{+}} \phi^{*}(s)=0$. Hence $\phi^{*} \equiv 0$ by absurdity.

Assume that ${ }^{\phi^{*}}(s)>0$ for $\left.s \in\right]_{\left.s_{0}, s_{0}+\rho\right]_{s}}$; then there exists S_{1} such that

$$
0<\bar{n}=\phi^{*}\left(s_{1}\right)=\max _{s \in\left[s_{0}, s_{0}+\rho\right]_{S}} \phi^{*}(s) .
$$

By condition (A1),

$$
\begin{equation*}
\bar{n}=\phi\left(s_{1}\right)=s_{1}^{-k} X\left(s_{1}\right) \leq \bar{n} s_{1}<\bar{n} \tag{3.36}
\end{equation*}
$$

Which is contradiction. So $\phi^{*}=0$. Hence (3.25) converge uniformly to a unique solution ${ }^{\phi}$ of (1.2) on $\left[s_{0}, s_{0}+\rho\right]_{s}$ by successive approximation.

3.3 Fractional order ODE and its uniqueness of Solution

Theorem 3.3.1. [Conditions of Krasnoselskii-Krein]
Denote $\quad C_{u}\left(\left[s_{s}, s_{0}+\alpha\right]_{s}, R\right)=\left\{p \mid p \in C\left[\left[s_{0}, s_{0}+\alpha\right]_{s}, R\right]\right\} \quad$ and $\left(s-s_{0}\right)^{L-\nu} p \in C\left(\left[s_{0}, s_{0}+\alpha\right]_{s}, R\right)$.

Let $h(s, y)$ be continuous in T_{0} and satisfying for all $(s, y),(s, \bar{y}) \in T_{0}$

$$
\begin{equation*}
|h(s, y)-h(s, \bar{y})| \leq k l \Gamma(a)\left|s-s_{0}\right|^{-a}|y-\bar{y}|, s \neq s_{0} \tag{C1}
\end{equation*}
$$

(C2) $|h(s, y)-h(s, \bar{y})| \leq c|y-\bar{y}|^{\sigma} \quad$ where $\quad c, l, k \quad$ are negative constants such that $k>1, k l \leq a$ and $\frac{1}{k(1-\delta)}>1$, and all real numbers δ lies between 0 and 1. Then the fractional order initial value problem (1.3) has only one solution on $\left[s_{0}, s_{0}+\alpha\right]$.

Proof: Suppose p and q are two solutions of (1.3) in $\left[s_{0}, s_{0}+\alpha\right]_{S}$. To show that $p \equiv q$.

To prove the result, define ${ }^{\psi(s) \text { and } Q(s)}$ by

$$
\left.\begin{array}{l}
\psi(s)=|p(s)-q(s)| \text {, for every } s \in\left[s_{0}, s_{0}+\alpha\right]_{s} \tag{3.37}\\
Q(s)=\frac{c}{\Gamma(a)} \int(s-t)^{a-1} \psi^{Z_{s}}(t) d t \text { for every } s \in\left[s_{0}, s_{0}+\alpha\right]
\end{array}\right\}
$$

Such that $\stackrel{\tilde{x}}{\psi}$ is the extension of ψ to the real interval ${ }_{\left[s_{0}, s_{0}+\alpha\right] \text {. From condition (B2), it follows }}$

$$
\begin{aligned}
v(s) & =\left|\frac{1}{r(a)} \int[k(t, p(t))-k(s, q(t))] \Delta x\right| \\
& \left.\leq \frac{1}{\Gamma(a)} \int \left\lvert\, n(t, p(t))-h(t, q(t))\left(\left.\Delta v \frac{1}{\Gamma(a)} \int a(v-1)^{--1} \right\rvert\, \bar{p}(t)-\bar{q}(t)\right)^{\gamma}+t\right.\right)=Q(v)
\end{aligned}
$$

(3.38)

Also ${ }_{s}^{s} D^{a} Q(s)=\hat{\psi}^{\delta}(s)=Q^{s}(s)$, for every $s \in\left[s_{0}, s_{0}+\alpha\right]_{s}$. for every $s \in\left[s_{0}, s_{0}+\alpha\right]_{s}$.

By (3.37) and (3.38) and using lemma 2.6, we get for every

$$
\begin{equation*}
s \in\left[s_{0}, s_{0}+\alpha\right]_{s}, \psi(s) \leq Q(s)=L\left(s-s_{0}\right)^{6} \tag{3.39}
\end{equation*}
$$

where ${ }^{L}$ and ξ are defined in lemma 2.6.

Moreover, define

$$
\phi(s)=\frac{\psi(s)}{\left(s-s_{0}\right)^{k}}
$$

We get

$$
\begin{equation*}
0 \leq \phi(s) \leq L\left(s-s_{0}\right)^{\varepsilon-L a}, \tag{3.40}
\end{equation*}
$$

for every

$$
s \in\left[s_{0}, s_{0}+\alpha\right]
$$

Hence

$$
\lim _{s \rightarrow s_{0}} \phi(s)=0
$$

Therefore, if we define $\phi\left(s_{0}\right)=0$, then the function is rd-continuous in $\left[s_{0}, s_{0}+\alpha\right]_{S}$.

Next to show that $\psi \equiv 0$. Assume contrarily ψ does not disappear at few points s; that is $\psi(s)>0$ on $\left.] s_{0}, s_{0}+\alpha\right]_{S}$. Then there exists a maximum $n>0$ attained when S is equal to some $s_{1}: s_{0}<s_{1} \leq s_{0}+\alpha$ such that $\phi(t)<n \leq \phi\left(s_{1}\right)$, for $t \in\left[s_{0}, s_{1}\right)_{s}$.

By hypothesis (B1), we have

$$
\begin{align*}
& n=\phi\left(s_{1}\right)=\left(s-s_{0}\right)^{-k} \psi\left(s_{1}\right) \\
& \left.n<\left(x-s_{0}\right)\right)^{+} \int n(s-t)^{-1}[\Delta(t, p(t))-s(t, q(t)]]^{s} \\
& s(x-k))^{-} \int_{N(x-i)^{-}-\frac{v(i)}{(1-t,)^{2}}}^{(x)} \tag{3.41}
\end{align*}
$$

$$
\begin{aligned}
& \operatorname{smb}\left(x_{1}-x_{5}\right)-t\left(x_{1}-1\right)^{-2} d \leq \frac{n d y}{a}<n
\end{aligned}
$$

which is contradiction. Hence the solution is unique.

Theorem 3.3.2. Conditions of Kooi's
Let $h(s, y)$ be non-discontinuous in T_{0} and for all $(s, y),(s, \bar{y}) \in T_{0}$ satisfying
(D2) $\left|s-s_{0}\right|^{b}|h(s, y)-h(s, \bar{y})| \leq c|y-\bar{y}|^{\sigma}$ for some nonnegative constants c, l and k; also the nonimaginary positive numbers b, δ, k, l are such that $0<b<\delta<1$ and $k(1-\delta)<1-b \& k l \leq a$. Then, the first order initial value problem of first order FDE (1.3) has at most one solution on $\left[s_{0}, s_{0}+\alpha\right]_{s}$.

Proof: The proof of this theorem is similar to the last theorem 3.3.1.

3.4. Krasnoselskii-Krein Conditions on Time Lamina and Existence of Solution of FDE

Assume that (C1) and (C2) are satisfied; then the consecutive approximation towards solution is given by

$$
\begin{equation*}
p_{m a t}(s)=\int_{s} h\left(t, p_{a}(t)\right) \Delta t \quad p_{0}(s)=0, \quad m=0,1,2, \ldots \tag{3,42}
\end{equation*}
$$

tends to a finite limit uniformly to the unique solution p of (1.3) on $\left[s_{0}, s_{0}+\rho\right]$, where ${ }^{\rho-\min \left\{\alpha_{\alpha},\left(\frac{\beta \Gamma(1+a)}{N}\right)^{\frac{1}{2}}\right\}}$ and N is the bound for h on T_{0}.

Proof: Since uniqueness of the solution have been proved by theorem 3.3.1, we have to prove the existence of solution by Arzela Ascoli theorem. The successive approximation $\left\{p_{m+1}\right\}, m=0,1,2, \ldots$ given in (3.42) are properly defined and continuous.

$$
\begin{aligned}
& \left|p_{m a t}(t)\right|-\left|\frac{1}{\Gamma(a)} \int(x-t)^{-1} \lambda\left(t, \rho_{-}(t)\right) \Delta\right| \leq \frac{1}{\Gamma(a)} \int(x-t)^{-1}\left|\mu\left(t, p_{n}(t)\right)\right| \Delta \\
& \text { For } n=0\left|p_{0}(x)\right| \leq \frac{N}{\Gamma(a)} \int(s-t)^{-1} \Delta \leq \frac{N}{\Gamma(a)} \int(s-t)^{-1} d \leq \frac{N a^{*}}{\Gamma(\Delta+1)} \leq \beta
\end{aligned}
$$

(3.45)

By mathematical induction, the flow of sequence $\left\{p_{j+1}(s)\right\}$ is properly defined and uniformly bounded on $\left[s_{o}, s_{0}+\rho\right]_{s}$.

Step: 2 To prove X is continuous function in $\left[s_{0}, s_{0}+\rho\right]_{s}$, where X is defined by

$$
\begin{equation*}
X(s)=\limsup _{j \rightarrow \infty}\left|p_{j}(s)-p_{j-1}(s)\right| \tag{3.46}
\end{equation*}
$$

For $s_{1}, s_{2} \in\left[s_{0}, s_{0}+\rho\right]_{S}$, we have

$$
\begin{equation*}
\left|p_{j+1}\left(s_{1}\right)-p_{j}\left(s_{1}\right)\right| \leq\left|p_{j+1}\left(s_{2}\right)-p_{j}\left(s_{2}\right)\right|+\frac{4 N}{\Gamma(a+1)}\left(s_{2}-s_{1}\right)^{n} \tag{3.47}
\end{equation*}
$$

That is

$$
\left|p_{i+1}\left(x_{1}\right)-p_{i}\left(s_{1}\right)\right|-\left|p_{j+1}\left(s_{2}\right)-p_{i}\left(s_{2}\right)\right| \leqslant\left|p_{i+1}\left(s_{1}\right)-p_{l}\left(s_{\mathrm{t}}\right)-p_{j+1}\left(s_{2}\right)+p_{i}\left(s_{2}\right)\right|
$$

$$
\begin{aligned}
& \leq \frac{1}{\Gamma(a)} \iint_{,}^{n}\left(s_{1}-t\right)^{t-1}\left[h\left(t, p_{j}(t)\right)-h\left(t, p_{H}(t)\right)\right] \Delta t- \\
& -\int_{0}^{t}\left(s_{1}-t\right)^{a-1}\left[h\left(t, p_{j}(t)\right)-h\left(t, p_{j-1}(t)\right)\right] \Delta t \\
& \begin{aligned}
& \left.-\int_{\Delta}^{n}\left(s_{2}-t\right)^{2-1}\left[h\left(t, p_{j}(t)\right)-h\left(t, p_{j}-t\right)\right)\right] \Delta t \mid \\
\leqslant & \frac{2 N}{\Gamma(a)}\left[\int_{0}\left(\left(s_{1}-t\right)^{-1}-\left(s_{2}-t\right)^{\omega-1}\right) \Delta t-\int\left(s_{2}-t\right)^{h-1} \Delta t\right]
\end{aligned} \\
& \leq \frac{2 N}{\Gamma(a)}\left[\int\left(\left(s_{1}-t\right)^{-1}-\left(s_{2}-t\right)^{t-1}\right) d t-\int_{5}^{n}\left(s_{2}-t\right)^{a-1} d t\right] \\
& \leq \frac{2 N}{a \Gamma(a)}\left[s_{t}^{e}-s_{2}{ }^{2}+2\left(x_{2}-s_{1}\right)^{0}\right] \leq \frac{4 N}{\Gamma(a+1)}\left(s_{2}-s_{1}\right)^{a}
\end{aligned}
$$

The right side of inequality (3.47) is at most
 for large m if $\varepsilon>0$ given that $\left|s_{2}-s_{1}\right| \leq\left[\frac{\varepsilon \Gamma(a+1)}{4 N}\right]^{\frac{1}{a}}$.

Since \mathcal{E} is arbitrary and S_{1}, s_{2} can be interchangeable, then

$$
\begin{equation*}
\left|X\left(s_{1}\right)-X\left(s_{2}\right)\right| \leq \frac{4 N}{\Gamma(a+1)}\left(s_{2}-s_{1}\right) . \tag{3.49}
\end{equation*}
$$

That is X continuous on $\left[s_{0}, s_{0}+\rho\right]_{s}$.

By condition (C2) and the definition consecutive
approximations, we get

$$
\begin{equation*}
\left|p_{j+1}(s)-p_{j}(s)\right| \leq \frac{c}{\Gamma(a)} \int_{\sum_{i}}^{\{ }\left[\left|p_{j}(t)-p_{j-1}(t)\right|^{\omega}\right] \Delta t \tag{3.50}
\end{equation*}
$$

therefore the sequence $\left\{p_{m}\right\}$ is equicontinuous. For each function p_{m} and $\varepsilon>0, s_{1}, s_{2} \in\left[s_{0}, s_{0}+\rho\right]_{S}$. If there exists $\quad \gamma=\frac{\varepsilon^{-a} \Gamma(a+1)}{N} \ni s_{2}-s_{1} \leq \gamma$; then $\left|p_{m+1}\left(s_{1}\right)-p_{m+1}\left(s_{2}\right)\right| \leq \frac{2 N}{\Gamma(a+1)}\left(s_{1}-s_{2}\right)^{a} \leq \varepsilon$

Let us denote $n^{n}(s)=\lim _{k \rightarrow \infty} \mid p_{j k}(s)-p_{j k-1}(s)$. Further, if $\left\{p_{j}-p_{j-1} \mid\right\} \rightarrow 0$ as $j \rightarrow \infty$, then the limiting case of any subsequence is the unique solution p of (3.42).

Let $Q(s)=\frac{c}{\Gamma(a)} \int^{f}(s-t)^{a-1} X(t)^{a} d t$ and define $\phi^{*}(s)=s^{-k} X(s)$ and then using lemma 2.6, we get that $\phi(s) \leq L\left(s_{1}-s_{0}\right)^{j-L a}$ which gives that $\lim _{s \rightarrow 0^{*}} \phi^{*}(s)=0$. And also proved that $\phi^{*} \equiv 0$ by absurdity. presume that $\phi^{*}(s)>0$ at any point in $\left[s_{0}, s_{0}+\rho\right]_{S}$; then there exist S_{1} such that $0<\bar{n}=\phi^{*}\left(s_{1}\right)=\max _{\text {Af }_{10,0, s}+p_{s}} \phi^{*}(s)$. For condition (C1), we obtain
$n=\phi\left(s_{1}\right)=\left(s_{1}-s_{0}\right)^{-t} \psi\left(s_{1}\right) \leq\left(s_{1}-s_{0}\right)^{-\omega} \int_{L_{0}}^{n} k\left(s_{1}-t\right)^{-1}\left(t-s_{0}\right)^{-0} \psi(t) d t$

this is an inconsistency. (i.e.) $\phi^{*}=0$. Hence Picard's successive approximation (3.42) tends to finite limit (uniform convergence) to unique solution p of (1.2) on $\left[s_{0}, s_{0}+\rho\right]_{s}$.

CONCLUSION

Hence, we can establish the solution of non-linear FDE with order $a \in(0,1]$ by few basic named conditions.

REFERENCES

[1] R. P. Agarwal and M. Bohner (1999). "Basic calculus on time scales and some of its applications," Results in Mathematics, vol. 35, no. 1-2, pp. 3-22.
[2] M. Bohner and A. Peterson (2001). Dynamic Equations on Time Scales, Birkhäuser, Boston, Mass, USA.
[3] M. Bohner and A. Peterson, Eds. (2003). Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, Mass, USA.
[4] G. S. Guseinov (2003). "Integration on time scales," Journal of Mathematical Analysis and Applications, vol. 285, no. 1, pp. 107127.
[5] G. S. Guseinov and B. Kaymakçalan (2002). "Basics of Riemann delta and nabla integration on time scales." Journal of Difference Equations and Applications, vol. 8, no. 11, pp. 10011017.
[6] N. Benkhettou, A. Hammoudi, and D. E M. Torres, "Existence and uniqueness of solution for a fractional riemann-liouville initial value problem on time scales." Journal of King Saud University-Science, vol. 28, no. 1, pp. 87-92, 2016.
[7] A. Chidouh, A. Guezane-Lakoud, and R. Bebbouchi (2016). "Positive solutions for an oscillator fractional initial value problem," Journal of Applied Mathematics and Computing.
[8] A. Chidouh, A. Guezane-Lakoud, and R. Bebbouchi (2016). "Positive solutions of the fractional relaxation equation using lower and upper solutions," Vietnam Journal of Mathematics.
[9] A. Guezane-Lakoud (2015). "Initial value problem of fractional order. "Cogent Mathematics, vol. 2, no. 1, Article ID 1004797.
[10] A. Guezane-Lakoud and R. Khaldi (2012). "Solvability of a fractional boundary value problem with fractional integral condition,"Nonlinear Analysis: Theory, Methods \& Applications, vol. 75, no.4, pp. 2692-2700.
[11] A. Guezane Lakoud and R. Khaldi (2012). "Solvability of a three-point fractional nonlinear boundary value problem." Differential Equations and Dynamical Systems, vol. 20, no. 4, pp. 395-403.
[12] A. Guezane-Lakoud and A. Kiliçman (2014). "Unbounded solution for a fractional boundary value problem," Advances in Difference Equations, vol. 2014, article 154.
[13] A. Souahi, A. Guezane-Lakoud, and A. Hitta (2016). "On the existence and uniqueness for high order fuzzy fractional differential equations with uncertainty" Advances in Fuzzy Systems, vol. 2016, Article ID 5246430, 9 pages, 2016.
[14] I. L. dos Santos (2015). "On qualitative and quantitative results for solutions to first-order dynamic equations on time scales," Boletin de la Sociedad Matemática Mexicana, vol. 21, no. 2, pp.205-218.
[15] R. A. C. Ferreira (2013). "A Nagumo-type uniqueness result for an nth order differential equation," Bulletin of the London Mathematical Society, vol. 45, no. 5, pp. 930-934.
[16] M. A. Krasnosel'skii and S. G. Krein (1956). "On a class of uniqueness theorems for the equation $y=f(x, y)$ " Uspekhi Matematicheskikh Nauk, vol. 11, no. 1(67), pp. 209-213.
[17] R.Prahalatha and M.M. Shanmugapriya (2017). Existence of Solution of GlobalCauchy Problem for Some Fractional Abstract Differential Equation. InternationalJournal of pure and Applied Mathematics, 116(22): pp. 163-174.
[18] R.Prahalatha and M.M. Shanmugapriya (2017). Existence of Extremal Solution for Integral Boundary Value Problem of Non Linear Fractional Differential Equations. International Journal of pure and Applied Mathematics, 116(22): pp. 175-185.
[19] R.Prahalatha and M.M. Shanmugapriya (2019). Controllability Results of Impulsive Integrodifferential Systems with Fractional Order and Global Conditions, Journal of Emerging Technologies and Innovative Research (JETIR), 6 (6): pp. 626-643.
[20] S. Suganya, M. Mallika Arjunan, J.J. Trujillo (2015). Existence results for an impulsive fractional integro-differential equation with state-dependent delay,Applied Mathematics and Computation, Volume 266, Pages 54-69.
[21] S. Suganya, Mallika Arjunan M. (2017). Existence of Mild Solutions for Impulsive Fractional Integro-Differential Inclusions with State-Dependent Delay. Mathematics;
5(1): pp. 9. https://doi.org/10.3390/math5010009
[22] V. Lakshmikantham and S. Leela (2009). "A Krasnoselskii-KREin-type uniqueness result for fractional differential equations."Nonlinear Analysis: Theory, Methods e Applications, vol. 71, no.7-8, pp. 3421-3424.
[23] E. Yoruk, T. G. Bhaskar, and R. P. Agarwal (2013). "New uniqueness results for fractional differential equations," Applicable Analysis, vol. 92, no. 2, pp. 259-269.
[24] S. G. Samko, A. A. Kilbas, and O. I. Marichev (1993). Fractional Integrals and Derivatives, Gordon and Breach Science Publishers, Yverdon, Switzerland, Theory and Applications, Edited and with a foreword by S. M. Nikol'skir, Translated from the 1987 Russian Original.

Corresponding Author

Dr. R. Prahalatha*

Assistant Professor, PG Department of Mathematics, Vellalar College for Women (Autonomous)
prahalathav@gmail.com

