

Ravi Shanker Sharma1* Gireesh Kumar Dixit2

w
w

w
.i
g

n
it

e
d

.i
n

167

 Journal of Advances and Scholarly Researches in Allied Education
Vol. 16, Issue No. 11, November-2019, ISSN 2230-7540

Node Clustering Distributed Networking Load
Balancing

Ravi Shanker Sharma1* Gireesh Kumar Dixit2

1
 Research Scholar

2
 Department of Computer Science, Shyam University, Dausa, Rajasthan

Abstract – "Cloud computing" encompasses a wide range of technologies, including virtualization,
distributed computing, networking, software, and online services. Customers, data centres, and
distributed servers are all part of a cloud architecture.. On-demand services and low TCO are just a few
of the features it offers, in addition to excellent uptime and fault tolerance. Developing a load balancing
algorithm is the focus of these concerns. It is possible to have a lot or a little of each form of stress on
the system. Dispersed systems can be more efficient if the burden is distributed among the system's
nodes rather than concentrated on a few nodes that are overworked while others remain idle or perform
very little work. Load balancing ensures that all system and network nodes are doing roughly the same
amount of work at any one time. Techniques that are either sender initiated, receiver initiated, symmetric,
static or dynamic, centralised or distributed are all feasible. Depending on the time of day, up to 80% of
workstations are idle, making them a valuable resource. The idle time and compute resources of a
processor can be used to reduce the cost of processing. Explain the concept of load balancing, different
types of load balancing algorithms, and the various policies that can be used in load balancing
algorithms in general, as well as provide an overview of various distributed load balancing algorithms
that can be used in cloud environments. Our goal is to

Key Words – Software as a Service, Platform as a Service ,sensors, IOT, load balancer, Cloud-
Computing, Sharing-Resources

- X -

1. INTRODUCTION

Instead of using remote servers or local machines,
Cloud computing allows services to be accessed
from a wide range of resources. Instead of using
remote servers or local workstations, Using cloud
computing, services may be accessed from a variety
of locations and devices. As far as I can tell, there
isn't a standard way to describe cloud computing. In
most cases, it is made up of a number of disparate
components.

In a network, servers known as masters give
requested services and resources to a variety of
clients known as customers. Distributed computers
offer on-demand services. Physical resources and
software resources are only a few instances of
services. Amazon EC2 is an example of a cloud
computing service. [2]

Components of the Cloud

The three major components of a Cloud system are
clients, datacenters, and distributed servers. Each
component provides a distinct function and serves
a certain goal.

The collective system load must be reassigned to
the individual nodes in order to increase resource
efficiency and task response time while also

Ravi Shanker Sharma1* Gireesh Kumar Dixit2

w
w

w
.i
g

n
it

e
d

.i
n

168

 Node Clustering Distributed Networking Load Balancing

eliminating a scenario where some nodes are
overloaded while others are underloaded. Instead of
taking into consideration the system's past state or
behaviour, a dynamic load balancing algorithm looks
at how the system is behaving at the time in
question. Load estimate and comparison, system
stability and performance, node interaction, the
nature of the task being transmitted and node
selection are all important considerations when
developing such an algorithm [13]. CPU
consumption, memory usage, delay or network
utilisation may all be used to quantify this strain. As
long as a job is assigned to any of the available
cluster nodes, it may be executed effectively. As a
result, a strategy for selecting the nodes with these
resources is required. Scheduling is a component or
method that is in charge of determining which cluster
node a certain process will be assigned to. The load
balancing state will be investigated using this
mechanism [9,10]. As a result, scheduling requires
algorithms to overcome such issues. In the actual
world, load balancing is primarily influenced by three
elements [11]:

• the environment in which the load is to be
balanced.

• the type of the load itself.

2. THE TOOLS FOR LOAD BALANCING
THAT ARE AVAILABLE

In order to increase the overall system's resource
efficiency and task response time, the task of
redistributing the system's total load across the
system's nodes is being carried out. A dynamic load
balancing algorithm ignores the system's previous
state or behaviour and instead focuses on the
system's current behaviour. Load estimate and
comparison, as well as stability and performance of
systems and nodes as well as interactions between
such nodes, are all important factors to take into
account while creating such an algorithm [13]. CPU,
memory, latency, and network utilisation can all be
used to quantify the strain. When a workload is
assigned to any cluster node, the available resources
are fully utilised, and the workload can be completed
quickly. As a result, a mechanism for determining
which nodes have these resources is needed.
Scheduling is a component or mechanism that
determines which cluster node will be assigned to a
specific process. This mechanism will be used to
explore the load balancing situation [9,10]. As a
result, scheduling necessitates the use of algorithms
to address these challenges. Load balancing is
generally influenced by three factors in the real world
[11]:

• The load must be balanced in a specific
setting.

Load balancing algorithms come in a variety of
shapes and sizes.

Which of these three algorithms for load balancing
is employed depends on who initiated the process
[4].

Sender-Initiated Load Balancing Algorithm: If
the sender initiates the load balancing procedure.

Receiver-Initiated Load Balancing Process: If
the algorithm for load balancing is started by the
receiver.

Symmetric: It is the result of both sender and
recipient initiating the communication.

Load balancing algorithms can be classified into
two groups based on the present condition of the
system, as shown in [4]:

Static: It is independent of the system's current
condition. It is necessary to have prior knowledge
of the system.

Dynamic: The present status of the system is
taken into account while making decisions about
load balancing. Participation is open to everyone
with no prior expertise. Because of this, a dynamic
approach is recommended. Discussed here are a
variety of dynamic load balancing methods for
clouds of varied sizes.

3. ALGORITHM FOR DYNAMIC LOAD
BALANCING

distributed and non-distributed methods of dynamic
load balancing are available in a distributed
system.

Ravi Shanker Sharma1* Gireesh Kumar Dixit2

w
w

w
.i
g

n
it

e
d

.i
n

169

 Journal of Advances and Scholarly Researches in Allied Education
Vol. 16, Issue No. 11, November-2019, ISSN 2230-7540

All nodes in the distributed system participate in the
dynamic load balancing algorithm, which distributes
the load balancing job. Cooperative and non-
cooperative interactions among nodes can be used
to achieve load balancing [4].

In the first, the nodes collaborate to achieve a
common goal, such as improving the overall reaction
time of the system. When Voml. 2oIssueo2f,
Ftehberuary- 2013 nodes work independently with
limited interactions with others, it is more favourable.

In a non-distributed system, load balancing is the
responsibility of a single node or a group of nodes.

An algorithm that is both centrally and semi-
distributed is available. A single system node does
all of the work involved in load balancing in type one.
The load balancing of the system is solely the
responsibility of this node. It is just the core node that
communicates with other nodes.

Semi-distributed load balancing is implemented in
each cluster, with the system's nodes partitioned into
clusters. Nodes in clusters are elected using an
appropriate mechanism to achieve load balancing
within each cluster. Thus, the cluster's core nodes
are responsible for the entire system's load
balancing [4].

In order to make an informed decision, centralised
dynamic load balancing requires many fewer
communications than semi-distributed load
balancing. However, if the central node falls, the load
balancing mechanism is rendered worthless in the
case of centralised approaches. Small networks are
more suited to the use of this method than larger
ones.

4. DYNAMIC LOAD BALANCING
POLICIES OR STRATEGIES

There are four policies in total [4]:

Move policies or Transfer strategies are algorithms
that pick which workloads to transfer from a local
node to a distant one.

It is determined by the selection policy which
processors will participate in the load exchange

As part of the load balancing mechanism, location
policy (or location strategy) is used to choose which
node will receive the transferred job.

There are two ways to refer to the dynamic load
balancing algorithm, one being "information policy"
and the other being "information strategy."

5. LOAD BALANCING METRICS IN
CLOUDS

Methods for optimising cloud load balancing now in
use look at factors like throughput and response time
as well as scalability and fault tolerance as well as
migration time and overhead. But parameters like
energy usage and carbon emissions must be taken
into account for an efficient load balancing.

An algorithm's Overhead Associated parameter is
used to determine the amount of overhead required
to implement it. Task mobility and communication
between processors and processes contribute to this
overhead. Keeping this to a minimal is necessary to
ensure that a load balancing approach works
effectively.

The term "throughput" refers to the number of tasks
that have been completed. It should be set to a
high value in order to improve the system's
performance.

The term "performance" refers to the process of
determining the system's efficiency. It must be
enhanced at a fair cost, such as reducing reaction
time while maintaining acceptable delays.

Resources are "utilised" in order to determine how
well they are being used. To maximise efficiency, it
should be optimised for load balancing.

Scalability refers to an algorithm's capacity to
balance the load of a system with any number of
nodes. This metric needs to be improved upon.

The response time of a distributed system's load
balancing algorithm is referred to as Response
Time. This parameter should be kept to a
minimum.

default Tolerance refers to an algorithm's capacity
to provide uniform load In the case of a node or
connection failure, rebalancing is necessary. For
load balancing to be effective, it must be both
dependable and fault-tolerant.

The term "migration time" refers to the amount of
time it takes to move tasks or resources across

Ravi Shanker Sharma1* Gireesh Kumar Dixit2

w
w

w
.i
g

n
it

e
d

.i
n

170

 Node Clustering Distributed Networking Load Balancing

nodes. In order to improve the system's
performance, it should be kept to a minimum.

The mVoroel and carbon emissions go hand in hand.
The greater the amount of 2ndIsesueen2e,
Frgebyruary-2013 ingested, the greater the carbon
footprint. As a result, it should be lowered for an
energy-efficient load balancing system. Load
Balancing Types

Load balancing can be accomplished in two ways:

1) software load balancing and

2) hardware load balancing.

3) Load balancing hardware

Load Balancing in Software:

Software load balancing is placed in the application
layer of the stack. Using software load balancing, an
arbiter decides which engine should be used to
process a given task, based on the software's
recommendation. With a web application, you may
implement software load balancing by using a proxy
such as HA Proxy to divert some requests toward
application server-x and some toward application
server-y.

Load Balancing Hardware:

It is called hardware load balancing when many
computers are used to distribute the work and raise
efficiency, which in turn improves the program's
speed. As a front, a load balancer software redirects
requests to the most appropriate computer for
processing. The price of hardware is now less than
the need for performance in the age of the cloud. As
a result, for applications that demand massive
scalability, hardware load balancing is highly
recommended.

6. CLOUD LOAD BALANCING VIA
DISTRIBUTED LOAD BALANCING LOAD

balancing is extremely important in complicated and
huge systems. The employment of techniques that
operate on the components of the cloud in such a
manner that the load on the entire cloud is balanced
is one way to simplify global load balancing. The
honeybee foraging method, biassed random
sampling using a random walk approach, and Active
Clustering are all examples of distributed system
solutions [7]. Honeybee Foraging Algorithm

The habit of honey bees for discovering and reaping
food inspired this algorithm. Forager bees are a type
of bee that forages for food sources and then returns
to the nest when they discover one.

The waggle dance was created by the beehive to
promote this. Through the performance of this dance,

the quality, quantity, and distance of the food from
the beehive are communicated. As soon as the
foragers arrived at the food supply, the scout bees
immediately began collecting it. Waggle dances
signal how much food is left, which leads to more
food being exploited or abandoned, so they return to
their hive and do it again.

Services are dynamically assigned to accommodate
the changing demands of users as demand on a web
server increases or falls. Virtual servers (VS) are
used to consolidate the servers, and each VS has its
own dedicated virtual service queue. A profit or an
incentive is generated for each server that executes
a request from its queue, as demonstrated by the
bees' waggle dance. Using the CPU's processing
time as an indicator is one approach to measure this
incentive. It's like a billboard for honey bees as they
dance on the dance floor. The colony's profit is also
posted on this board.

As a forager or scout, each server takes on the
function assigned to them. If a server makes
money from a request, they may decide to promote
their success on the message boards.

There are two ways that the server may
demonstrate foraging/exploring behaviour: it can
use probability calculations to choose which VS
queue to use, or it can look for advertising and fulfil
those requests. Px is established after taking into
account the server's profit and comparing it to the
colony's profit. Even if the profit was little, the
server will likely be advertised for if the profit is big
enough to keep it on the current virtual server. The
server switches back to foraging or scouting mode
if this value was too low.

1. Use random solutions to start the
population.

2. Assess the population's fitness.

3. Creating a new population.

4. Pick a few sites for a neighbourhood
search.

5. Recruit bees for certain locations and
assess fitness.

6. Choose the most fit bee from each patch.

7. Using a random search, evaluate the
fitness of the surviving bees.

8. Put an end to it.

Server Allocations Using the Honey Bee Technique
of Foraging (adopted from [14])

Ravi Shanker Sharma1* Gireesh Kumar Dixit2

w
w

w
.i
g

n
it

e
d

.i
n

171

 Journal of Advances and Scholarly Researches in Allied Education
Vol. 16, Issue No. 11, November-2019, ISSN 2230-7540

Random Sampling with Bias

As each node in this virtual graph is connected to
other nodes, this virtual graph represents the amount
of demand on the server. An individual server's free
resources are represented by the graph as degrees
at each node.

By eliminating an incoming edge, the amount of
available resources is reduced when the task
performed by the node is completed. One way to tell
when free resources are becoming more readily
available is when the node makes an incoming edge.
To add and delete processes from the database,
random sampling is performed.

Any node can be the starting point of the walk, and a
random neighbour will be chosen at each step. Load
is distributed to the last node. Alternatively, another
approach for picking a node for load allocation can
be utilised, which involves selecting a node based on
particular factors such as computational efficiency,
etc. Another option is to allocate load to the node
that is the most underloaded, i.e. the one with the
highest degree. If b is the walking distance, then
increasing b enhances load allocation efficiency. For
practical purposes, we set a b-threshold value that is
approximately equal to log n.

It is only possible for a node to do a task if its current
walk time is greater than or equal to the job's length.

As a criteria Otherwise, the job's travel distance is
lengthened and a new neighbour node is randomly
selected. When a node completes a task, it removes
an incoming edge from the graph. Edges are then
formed between the two nodes that started and
finished the load allocation operation after the task is
done.

We end up with a graph that is directed. This method
of load balancing is totally decentralized, making it
ideal for large network systems like those seen in
cloud computing. Involved clustering Active
Clustering is based on the idea of grouping related
nodes together and focusing on them.

The procedure is as follows:

Once a node has found the right matchmaker node,
it moves on to the next step in the process by
selecting one of its neighbours that is distinct from
the prior one. Using the so-called "matchmaker
node," the starting node is connected to its
neighbours who are also of the same kind as the
initial node.

The link between the matchmaker node and the
starting node is then severed.

The processes listed above are repeated iteratively.

7. CONCLUSION

An overview of distributed load balancing algorithms
for cloud computing is provided in this article, In this
chapter, we'll look at how dynamic load balancing
algorithms work, the many types of load balancing
algorithms that exist, and the various rules that may
be used in each.

REFERENCES

1. Armbrust, M., A. Fox, R., Griffith, A.D.,
Joseph, R., Katz, A., Konwinski, et al.
(2010)―A View of Cloud
Computing,‖ Communications of the ACM
(53)4, pp. 50–58.

2. Andrew Downie (2008-04-21). "The
World's Worst Traffic Jams". Time.
Retrieved 2008- 06-20.

3. Aslam, U., I. Ullah, and S. Ansari
(2010)―Open Source Private Cloud
Computing,‖ Interdisciplinary Journal of
Contemporary Research In Business (2)7,
p. 399.

4. Avetisyan, A.I., R. Campbell, I. Gupta, M.T.
Heath, S.Y. Ko, G.R. Ganger, et al.
(2010)―Open Cirrus: A Global Cloud
Computing Tested,‖ Computer (43)4, pp.
35–43.

5. Banerjee, P., R. Friedrich, C. Bash, P.
Goldsack, B.A. Huberman, J. Manley, et al.
(2011) ―Everything as a Service:
Powering the New Information Economy,‖
Computer (44)3, pp. 36–43.

6. Barki, H., S. Rivard, and J. Talbot (1993)
―A Keyword Classification Scheme for IS
Research Literature: An Update,‖ MIS
Quarterly, June, pp. 209–225.

7. Barnhill, D.S. (2010) ―Cloud Computing
and Stored Communications: Another Look
at Z. Shi, Advanced Artificial Intelligence,
World Scientific, Singapore, 2011.

8. M. S. Ali, M. Adnan, S. M. Noman, and S.
F. A. Baqueri, ―Estimation of traffic
congestion cost-A case study of a major
arterial in karachi,‖ Procedia Engineering,
vol. 77, pp. 37–44, 2014.View at: Publisher
Site | Google Scholar

9. W. Cao and J. Wang, ―Research on traffic
flow congestion based on Mamdani fuzzy
system,‖ AIP Conference Proceedings, vol.
2073, 2019.View at: Publisher
Site | Google Scholar

https://doi.org/10.1016/j.proeng.2014.07.030
https://doi.org/10.1016/j.proeng.2014.07.030
https://doi.org/10.1016/j.proeng.2014.07.030
https://scholar.google.com/scholar_lookup?title=Estimation%20of%20traffic%20congestion%20cost-A%20case%20study%20of%20a%20major%20arterial%20in%20karachi&author=M.%20S.%20Ali&author=M.%20Adnan&author=S.%20M.%20Noman&author=&author=S.%20F.%20A.%20Baqueri&publication_year=2014
https://doi.org/10.1063/1.5090755
https://doi.org/10.1063/1.5090755
https://doi.org/10.1063/1.5090755
https://scholar.google.com/scholar_lookup?title=Research%20on%20traffic%20flow%20congestion%20based%20on%20Mamdani%20fuzzy%20system&author=W.%20Cao%20&author=J.%20Wang&publication_year=2019

Ravi Shanker Sharma1* Gireesh Kumar Dixit2

w
w

w
.i
g

n
it

e
d

.i
n

172

 Node Clustering Distributed Networking Load Balancing

10. X. Kong, Z. Xu, G. Shen, J. Wang, Q. Yang,
and B. Zhang, ―Urban traffic congestion
estimation and prediction based on floating
car trajectory data,‖ Future Generation
Computer Systems, vol. 61, pp. 97–107,
2016.View at: Publisher Site | Google
Scholar

11. Q. Yang, J. Wang, X. Song, X. Kong, Z. Xu,
and B. Zhang, ―Urban traffic congestion
prediction using floating car trajectory data,‖
in Proceedings of the International
Conference on Algorithms and Architectures
for Parallel Processing, pp. 18–30, Springer,
Zhangjiajie, China, November 2015.View
at: Google Scholar

12. W. Zhang, Y. Yu, Y. Qi, F. Shu, and Y.
Wang, ―Short-term traffic flow prediction
based on spatio-temporal analysis and CNN
deep learning,‖ Transportmetrica A:
Transport Science, vol. 15, no. 2, pp. 1688–
1711, 2019.View at: Publisher Site | Google
Scholar

13. T. Adetiloye and A. Awasthi, ―Multimodal big
data fusion for traffic congestion
prediction,‖ Multimodal Analytics for Next-
Generation Big Data Technologies and
Applications, Springer, Berlin, Germany,
2019.View at: Publisher Site | Google
Scholar

14. F. Wen, G. Zhang, L. Sun, X. Wang, and X.
Xu, ―A hybrid temporal association rules
mining method for traffic congestion
prediction,‖ Computers & Industrial
Engineering, vol. 130, pp. 779–787,
2019.View at: Publisher Site | Google
Scholar

15. J. Wang, Y. Mao, J. Li, Z. Xiong, and W.-X.
Wang, ―Predictability of road traffic and
Congestion in urban areas,‖ PLoS One, vol.
10, no. 4, Article ID e0121825, 2015.View
at: Publisher Site | Google Scholar

16. Z. He, G. Qi, L. Lu, and Y. Chen, ―Network-
wide identification of turn-level intersection
congestion using only low-frequency probe
vehicle data,‖ Transportation Research Part
C: Emerging Technologies, vol. 108, pp.
320–339, 2019.View at: Publisher
Site | Google Scholar

17. K. M. Nadeem and T. P. Fowdur,
―Performance analysis of a real-time
adaptive prediction algorithm for traffic
congestion,‖ Journal of Information and
Communication Technology, vol. 17, no. 3,
pp. 493–511, 2018.View at: Publisher
Site | Google Scholar

18. H. Zhao, X. Jizhe, L. Fan, L. Zhen, and L.
Qingquan, ―A peak traffic Congestion
prediction method based on bus driving
time,‖ Entropy, vol. 21, no. 7, p. 709, 2019.

Corresponding Author

Ravi Shanker Sharma*

Research Scholar

https://doi.org/10.1016/j.future.2015.11.013
https://scholar.google.com/scholar_lookup?title=Urban%20traffic%20congestion%20estimation%20and%20prediction%20based%20on%20floating%20car%20trajectory%20data&author=X.%20Kong&author=Z.%20Xu&author=G.%20Shen&author=J.%20Wang&author=Q.%20Yang&author=&author=B.%20Zhang&publication_year=2016
https://scholar.google.com/scholar_lookup?title=Urban%20traffic%20congestion%20estimation%20and%20prediction%20based%20on%20floating%20car%20trajectory%20data&author=X.%20Kong&author=Z.%20Xu&author=G.%20Shen&author=J.%20Wang&author=Q.%20Yang&author=&author=B.%20Zhang&publication_year=2016
https://scholar.google.com/scholar_lookup?title=Urban%20traffic%20congestion%20estimation%20and%20prediction%20based%20on%20floating%20car%20trajectory%20data&author=X.%20Kong&author=Z.%20Xu&author=G.%20Shen&author=J.%20Wang&author=Q.%20Yang&author=&author=B.%20Zhang&publication_year=2016
https://scholar.google.com/scholar_lookup?title=Urban%20traffic%20congestion%20prediction%20using%20floating%20car%20trajectory%20data&author=Q.%20Yang&author=J.%20Wang&author=X.%20Song&author=X.%20Kong&author=Z.%20Xu&author=&author=B.%20Zhang
https://doi.org/10.1080/23249935.2019.1637966
https://scholar.google.com/scholar_lookup?title=Short-term%20traffic%20flow%20prediction%20based%20on%20spatio-temporal%20analysis%20and%20CNN%20deep%20learning&author=W.%20Zhang&author=Y.%20Yu&author=Y.%20Qi&author=F.%20Shu&author=&author=Y.%20Wang&publication_year=2019
https://scholar.google.com/scholar_lookup?title=Short-term%20traffic%20flow%20prediction%20based%20on%20spatio-temporal%20analysis%20and%20CNN%20deep%20learning&author=W.%20Zhang&author=Y.%20Yu&author=Y.%20Qi&author=F.%20Shu&author=&author=Y.%20Wang&publication_year=2019
https://scholar.google.com/scholar_lookup?title=Short-term%20traffic%20flow%20prediction%20based%20on%20spatio-temporal%20analysis%20and%20CNN%20deep%20learning&author=W.%20Zhang&author=Y.%20Yu&author=Y.%20Qi&author=F.%20Shu&author=&author=Y.%20Wang&publication_year=2019
https://doi.org/10.1007/978-3-319-97598-6_13
https://scholar.google.com/scholar_lookup?title=Multimodal%20big%20data%20fusion%20for%20traffic%20congestion%20prediction&author=T.%20Adetiloye%20&author=A.%20Awasthi&publication_year=2019
https://scholar.google.com/scholar_lookup?title=Multimodal%20big%20data%20fusion%20for%20traffic%20congestion%20prediction&author=T.%20Adetiloye%20&author=A.%20Awasthi&publication_year=2019
https://scholar.google.com/scholar_lookup?title=Multimodal%20big%20data%20fusion%20for%20traffic%20congestion%20prediction&author=T.%20Adetiloye%20&author=A.%20Awasthi&publication_year=2019
https://doi.org/10.1016/j.cie.2019.03.020
https://scholar.google.com/scholar_lookup?title=A%20hybrid%20temporal%20association%20rules%20mining%20method%20for%20traffic%20congestion%20prediction&author=F.%20Wen&author=G.%20Zhang&author=L.%20Sun&author=X.%20Wang&author=&author=X.%20Xu&publication_year=2019
https://scholar.google.com/scholar_lookup?title=A%20hybrid%20temporal%20association%20rules%20mining%20method%20for%20traffic%20congestion%20prediction&author=F.%20Wen&author=G.%20Zhang&author=L.%20Sun&author=X.%20Wang&author=&author=X.%20Xu&publication_year=2019
https://scholar.google.com/scholar_lookup?title=A%20hybrid%20temporal%20association%20rules%20mining%20method%20for%20traffic%20congestion%20prediction&author=F.%20Wen&author=G.%20Zhang&author=L.%20Sun&author=X.%20Wang&author=&author=X.%20Xu&publication_year=2019
https://doi.org/10.1371/journal.pone.0121825
https://scholar.google.com/scholar_lookup?title=Predictability%20of%20road%20traffic%20and%20Congestion%20in%20urban%20areas&author=J.%20Wang&author=Y.%20Mao&author=J.%20Li&author=Z.%20Xiong&author=&author=W.-X.%20Wang&publication_year=2015
https://doi.org/10.1016/j.trc.2019.10.001
https://doi.org/10.1016/j.trc.2019.10.001
https://doi.org/10.1016/j.trc.2019.10.001
https://scholar.google.com/scholar_lookup?title=Network-wide%20identification%20of%20turn-level%20intersection%20congestion%20using%20only%20low-frequency%20probe%20vehicle%20data&author=Z.%20He&author=G.%20Qi&author=L.%20Lu&author=&author=Y.%20Chen&publication_year=2019
https://doi.org/10.32890/jict2018.17.3.5
https://doi.org/10.32890/jict2018.17.3.5
https://doi.org/10.32890/jict2018.17.3.5
https://scholar.google.com/scholar_lookup?title=Performance%20analysis%20of%20a%20real-time%20adaptive%20prediction%20algorithm%20for%20traffic%20congestion&author=K.%20M.%20Nadeem%20&author=T.%20P.%20Fowdur&publication_year=2018

