Comparative Study of Structural Responses of Floating Column and Non-Floating Column Structural Frames

Mr. Ganesh K. Koshti¹* Dr. Prashant M. Pawar² Dr. Manik G. Deshmukh³ Mr. Chetan R. Limkar⁴ Ms. Amruta L. Lugade⁵

¹ PG Student, Civil Engineering Department, SVERI's College of Engineering, Pandharpur, Maharashtra

² Professor, Civil Engineering Department, SVERI's College of Engineering, Pandharpur, Maharashtra

³ Associate Professor, Civil Engineering Department, SVERI's College of Engineering, Pandharpur, Maharashtra

⁴ Assistant Professor, Civil Engineering Department, SVERI's College of Engineering, Pandharpur, Maharashtra

⁵ PG Student, Civil Engineering Department, SVERI's College of Engineering, Pandharpur, Maharashtra

Abstract – In this project analysis and design of a G+14 RC building is done by introducing the floating column in different conditions such as internal floating column, external floating column and alternate level floating column for determining parameter like displacement, forces and moments is done by using ETABS software. Also conclusion is carried out on the basis of following ways. Significant outcome of the study includes, provision of Internal and External floating columns increases the torsion values at all floors and provision of alternate level floating column there is reduction in torsion value. Provision of Internal floating columns may increase displacement at various nodes. Introduction of floating column increases torsion in beam at all floors for all zones. The quantity of steel and concrete gets increase as compared to the individual cases due to floating column so floating column may be provided at appropriate places as per requirement of the plan.

Keywords – Floating Columns, Seismic Zones, Critical Load Combinations, Response Spectrum etc.

·····X·····

I. INTRODUCTION

A typical Column is a vertical structural member which support to horizontal structural members by means of their weights, moments, and shear force, axial load etc., to keep the structure in safe condition and transfer these loads to the ground. But now a day's some columns are designed in such a manner that it does not reach to the ground, because of various architectural aspects. In those cases the columns transfer above loads as a point load on a beam. This type of column is termed as Floating column. This Point load increases too much bending moment on beam so that area of steel required will be more in such cases. While earthquake occurs, the building with floating columns damages more as compared to the building without any floats columns because of discontinuity of structure & load transfer path.

The overall size, shape and geometry of a structure play a very important roll to keep structure safe while earthquake occurs. As theory and practical study on buildings says that, earthquake forces developed at different floor levels in a building needs to be brought down along the height to the ground by the shortest path; any deviation of discontinuity in this load transfer path results in poor performance of the building. In Earthquake analysis the main response parameters are storey displacement, Storey drift, storey shear. These parameters are evaluated in this paper and critical position of floating column building is observed. In this critical position the effect of increasing section of beam and column in irregular building and regular building has been observed.

The Response of a structure to the ground vibration is a function of the nature of foundation soil; materials, form, size and mode of construction of structure; and the duration and characteristics of ground motion. IS 1893 (part I):2002 specifies the various criteria for design of structure considering earthquake zones, type of structure, soil type, Importance factor of structure, response reduction factor etc. The basic criteria of earthquake resistant design should be based on lateral strength as well as deformability and ductility capacity of structure with limited damage, but no collapse.

A. ADVANTAGES AND DISADVANTAGES OF FLOATING COLUMNS

1. Advantages

- By using floating columns large functional space can be provided which can be utilizing for storage and parking.
- In some situations floating columns may prove to be economical in some cases.
- The floating column is important for dividing the rooms and some portion can raise without whole area

2. Disadvantages

- Not suitable in high seismic zone since abrupt change in stiffness was observed.
- Required large size of girder beam to support floating column.
- Floating columns leads to stiffness irregularities in building.
- Flow of load path increases by providing floating columns. The load from structural members shall be transfer to the foundation by the shortest possible path.

B. OBJECTIVES

- The objective of the present work is to study the behaviour of multi-storey buildings with and without floating columns under earthquake excitations.
- Seismic Coefficient Method is carried out for the multi-storey buildings under different load combination. The base of the building frame is assumed to be fixed.
- To study of Internal floating columns & Alternate floor floating columns observation of displacement at various nodes.
- To know the axial forces at various nodes due to provision of External floating columns.
- To observe the effect of storey drift on structure due to floating column.
- Case 1: RC Building without floating columns
- Case 2: RC Building with Internal floating columns

Case 3: RC Building with External floating columns

Case 4: RC Building with Alternate floor floating columns

II. MATERIALS & METHODOLOGY

A. PROBLEM STATEMENT

A RCC medium rise building of G+14 stories with floor height 3m subjected to earthquake loading in Zone II, III, IV, V has been considered .In this regard, ETAB software have been considered as tool to perform. Hence in this chapter we will discuss the parameters defining the computational models, the basic assumptions and the geometry of the selected building considered for this study. Displacements, axial forces, shear force, bending moment. Have been calculated for different columns and beams to find out the effect in the building.

a) Description of structure

- 1. Length of building -26 m
- 2. Width of building-26 m
- 3. Storey Height of building 3m
- 4. Total height of building 45 m
- 5. Dimension of column 0.8x0.5 m for zone v
- 6. Dimension of beam 0.5x 0.3 m for zone v
- 7. Thickness of slab 150 mm
- Dead load on building for 0.23m thick wall -14 kN/m
- 9. Dead load on building for 0.15m thick wall 9kN/m
- 10. Live load on building -3 kN/m2
- 11. Response Spectra As per IS 1893 (Part-1): 2002

Journal of Advances and Scholarly Researches in Allied Education Vol. 18, Issue No. 5, August-2021, ISSN 2230-7540

- 12. Damping 5%
- 13. Importance Factor 1.5
- 14. Response reduction factor
 - a. For SMRF 5
- 15. Seismic load as per zone factor and Response Reduction Factor
 - a. Earthquake load in X –Direction
- 16. Earthquake load in Z –Direction

b) Assumption

- 1. The material is homogeneous and isotropic.
- 2. All columns supports are considered as fixed at the foundation.
- 3. Tensile strength of concrete is ignored in sections subjected to bending.
- 4. The maximum target displacement of the structure is calculated in accordance with the guidelines given by IS Code for maximum roof level lateral drift and displacement.
- 5. The building is designed by according to I.S. 456:2000 for Dead Load and Live load.

Fig 1 Modelling in ETABS

III. RESULTS AND OBSERVATIONS

A. Axial force (f_x) for all zones (corner column)

			Case 1				Case 2					Cas	æ 3		Case 4				
Category		Floor	II	Ш	IV	V	II	III	IV	V	II	III	IV	V	II	III	IV	V	
of column	L/C	Level	SMRF																
			Fx																
	1.5(DL+EQX)	0	3747.21	3878.71	4103.75	4409.35	3798.75	3932.45	4161.27	4472.00	3651.49	3788.50	4022.99	4341.42	3939.51	4103.00	4320.99	4647.98	
	1.5(DL+EQX)	1	3504.46	3623.09	3826.11	4101.81	3552.84	3673.50	3880.00	4160.42	3416.57	3540.14	3751.64	4038.83	3658.66	3805.30	4000.81	4294.07	
	1.5(DL+EQX)	2	3255.20	3360.06	3539.51	3783.20	3300.63	3407.40	3590.12	3838.24	3175.56	3284.88	3471.99	3726.08	3448.32	3580.67	3757.14	4021.84	
column	1.5(DL+EQX)	3	3001.90	3093.09	3249.14	3461.05	3043.99	3136.93	3295.99	3511.99	2930.25	3025.46	3188.41	3409.69	3207.42	3324.39	3480.36	3714.31	
	1.5(DL+EQX)	4	2745.72	2823.69	2957.11	3138.30	2784.32	2863.89	3000.05	3184.97	2681.77	2763.33	2902.92	3092.48	2948.57	3050.23	3185.78	3389.11	
	1.5(DL+EQX)	5	2487.46	2552.85	2664.74	2816.70	2522.51	2589.35	2703.73	2859.06	2430.88	2499.46	2616.83	2776.22	2694.81	2781.65	2897.43	3071.10	
	1.5(DL+EQX)	6	2227.82	2281.42	2373.14	2497.70	2259.29	2314.19	2408.14	2535.73	2178.26	2234.67	2331.22	2462.32	2427.65	2500.34	2597.27	2742.65	
1 er	1.5(DL+EQX)	7	1967.43	2010.16	2083.29	2182.59	1995.30	2039.18	2114.29	2216.28	1924.56	1969.74	2047.06	2152.07	2149.07	2208.64	2288.05	2407.17	
Ę	1.5(DL+EQX)	8	1706.87	1739.77	1796.07	1872.52	1731.11	1765.02	1823.05	1901.85	1670.37	1705.37	1765.27	1846.61	1876.02	1923.20	1986.10	2080.44	
U	1.5(DL+EQX)	9	1447.36	1471.93	1513.98	1571.08	1467.83	1493.20	1536.60	1595.55	1416.39	1442.44	1487.02	1547.56	1596.59	1633.08	1681.74	1754.74	
	1.5(DL+EQX)	10	1188.96	1206.56	1236.69	1277.60	1205.98	1224.33	1255.75	1298.42	1164.32	1183.34	1215.90	1260.11	1311.67	1339.18	1375.85	1430.86	
	1.5(DL+EQX)	11	931.49	943.25	963.37	990.70	944.96	957.39	978.68	1007.58	912.76	925.80	948.12	978.43	1030.77	1049.94	1075.51	1113.86	
	1.5(DL+EQX)	12	675.34	682.43	694.58	711.07	685.13	692.79	705.89	723.68	662.09	670.25	684.21	703.18	747.32	759.59	775.95	800.49	
	1.5(DL+EQX)	13	420.92	424.57	430.82	439.30	426.88	430.93	437.85	447.25	412.70	417.10	424.64	434.88	464.38	471.52	481.04	495.33	
	1.5(DL+EQX)	14	167.52	168.86	171.16	174.28	169.50	171.02	173.63	177.17	163.94	165.65	168.58	172.56	171.06	173.75	177.34	182.73	

Fig 3

Fig 5

B. Axial force (fx) for all zones (intermediate column)

	2	Her	Case1					- Ca	x!	111		Ľ.	нš		Case4				
Copy			1	11	Ť	4	1	П	D.	¥.	1	I	N.	÷ÿ.	11	I	1	Ŧ	
d oium	LC	Lod	5185	5127	SUDE	512	9M2F	932E	93/25	SME	SMEE	SARE	SUE	弘旺	SAT	1202	1802	1902	
1			h	h	h	h	h	h	h	h	h	h	h	h	k	-B	k	łs.	
	13(0.4(0)	1	3671	用設	相比	和资	381	1024	50.5	34.1	3214	38319	401	411	3015	4013	483	-0113	
	1300년(初)	1	385	841	3012	3814	1731	4852	1802.0	磨け	32913	初時	701	潮口	3897	动山	潮柱	湖村市	
	11/01/12(6)	1	期初	.1981.7	140	152	457.5	439.1	16011	6811	1981.3	3013	385	399.7	3483	581	330	2873	
ŝ	13年400	3	湖山	抽热	3354	當日	386	- 304	3833	384)	333	343	湖口	201	対け	2383	했	292	
	13/DL+EQ0)	4	2014	2355	2855	2951	30	.001.4	3444	3403	3411	2005	286	2011	2811	2991	2019	2811	
1	11(0)(+6(0))	3	284	285	湖민	3000	2972	MIT.	30.3	303.5	278	.201	2001	加川	湖川	388	389	382	
÷.	1306-E(6)	1	2161	290.0	1974	2963	2014	284	3314	.328.1	23845	284	29.11	1333	2844	2912	2817	2963	
1	1106-600	1	323	2223	125	123.1	2912	50	2803	200	如月	200.5	301	2019	2013	203	2013	23	
÷.	1300-100	1	194.3	11124	1783.6	174.2	196.1	199.5	- 200	: 334	17713	1701	128.4	1311	15211	18212	副	1819.7	
-	1306-500)	3112	的核	間	150)	30.0	1044	190.0	10.23	151	150	:129(i)	19114	1911	1545	1922	.2965	
-	1306+500	-18	129.4	맘니	100	1295.8	1974)	1944	1001	1423.1	129.1	1201	1211	1291	1391	1347	1316	11569	
	13(0)-E(0)	11.	9618	州田	NU	NB	1024	107.1	1042	1121	90.0	州县	1842	1037	1031	1211	田坊	3605	
	13/EE+EQ0)	12	18.7	275	7423	183.0	32,31	消退	105.71	\$2.6	10.0	73.6	383	70.0	丽	341.63	7128	317	
	1306-600	10	-##.5	把肩	47.3	振調	相当	48.4	32.0	\$5.5	141.11	透放	相片	401	- UL	- 植芳	414	初给	
	130L+EQ0	14	12.4	172	111.63	18236	111.22	194,97	18.8	2911	172.00	15.8	10.7	INC!	171.68	5128	189	111.5	

Axial Force for Intermediate Column

Journal of Advances and Scholarly Researches in Allied Education Vol. 18, Issue No. 5, August-2021, ISSN 2230-7540

Fig 9

C. Shear force (fz) for all zones (corner column)

Shear Force for Corner Column

Fig 10

Fig 13

D. Shear force (f_z) for all zones (intermediate column)

	υc	Flor Lerit	Case 1				Case 1					-Ce	e]		Cix 4			
Calipery			11	11	II.	1	1	11	Π	.17	1	-11	17	1	1	I	37	7
doku			Int	幼町	奶町	\$\$B}	\$\$87	SV#F	8385	SME	\$\$\$5	SARE	988	9485	5165	550F	985	955
			ħ	ħ	ħ	ħ	ħ	Ð.	ħ	n	Ð	'n.	Ð.	Ð	Ð	ħ.	Ð	ħ
	13(DL-EQ2)	1	后房	829	12.14	316	64.02	9,27	1024	20.11	前吃	東川	TWR	207.84	11.72	載問	123	18.5
	1500-657	1	10.83	8.93	UTH	32.6	61,527	8.95	107.56	3011	6.92	9.0	101	105	13/62	16.82	152.9	28.0
	1300-1020	2	340	巨 碗	良田	134,81	61317	17.6%	13287	197.06	51.90	633	130	199.00	57371	85318	1248	121
ŝ	1500.4600	1	施制	10.114	121.88	185.86	57,941	极期	15.4	16.11	530	6,91	133	19.0	外围	8.71	118/	13.6
	1906-682	4	5418	71	被扬	114.8	93H	浅田	19.1	13.0	知知	35.98	12.54	13.6	-66.724	拉动	18.9	122.74
1	130(402)	1	313	11,12	8213	. 12	01	7431	甘油酸	165世	47.6%	3.28	11514	198.74	423	32	1672	15.7
2	LSDL-EQT	1	41579	3(3)	10T()	19(1)	-9.84	3.92	1011	1917	9.06	72,178	100.59	10.0	疗所	69.80	10013	1654
4	1300-EQ	1	47.98	(7.84	10179	14.34	47.48	初相	10.9	17.54	. 81	0.02	1045	123	3598	8323	1211	18.3
	1300-600	1	839	6129	所相	1#.04	机械	机制	活刷	振行	林松	66.398	9930	183	4352	法规	90:04	129.65
-	130L-EXC	1	-0.471	18.334	899	131,24	47.01	多税	极政	13.71	441	62321	究院	190	4.07	9.64	\$1.394	11.9
-	1300-600	1)	現扮	5.04	1.97	10.8	通知	穷频	机石	116.44	-411	2.66	9,64	12	45.00	641	10.5	14.8
	130L+EQ2)	11	ガ目	-824	3:61	101#	完财		-9.34	99.76	16.63	5034	274	18.9	24	4153	415	6.95
	15EL-EXE	12	391	3.61	须用	0.62	26.00	38.25	5.91	75541	乳印	4.53	6.64	\$1373	23.66	39579	820	7615
	1500-862	15	22814	348	4.66	货褥	范别	3.04	法犯	防阻	2438	3.30	花的	60.5%	25页	34124	471	68110
	1500-600	14	16.048	IN TH	3.0]	2114	14217	1690	3.67	27342	12.5	20.733	3,23	放着	1573	17.785	110%	3600

Shear Force for Intermediate Column

Fig 16

IV. CONCLUSION

- 1. With the provision of Internal floating columns & Alternate floor floating columns may increase in axial force & shear force at all floors.
- It is observed that Internal floating columns & External floating columns increases the torsion values at all floors for all zones
- 3. It is observed that provision of Alternate floor floating columns there is reduction in the Torsion values
- 4. With the provision of Internal floating columns there is increase in moment at corner column but reduction in moment at intermediate column at all floors. For Alternate floor floating columns the result were exactly opposite to the results obtained in Internal floating columns

Journal of Advances and Scholarly Researches in Allied Education Vol. 18, Issue No. 5, August-2021, ISSN 2230-7540

- 5. Provision of Internal floating columns & Alternate floor floating columns may increase displacement at various nodes
- 6. Provision of External floating columns may decrease displacement at various nodes
- 7. Provision of floating column increases torsion in beam at all floors for all zones
- 8. Due to the increase in the value of bending moment in the beams adjacent to the floating columns up to 4th floor the size of the beam increases hence increases in overall quantity of steel & concrete of the structure
- 9. The quantity of steel and concrete gets increase as compared to the individual cases due to floating column so floating column may be provided at appropriate places as per requirement of the plan
- 10. Placement of Internal or External floating column may result development of additional forces on adjoining beams and columns adequate checks should be carried out before designing the structure. Precaution must also be taken for smooth transfer of lateral forces to ground

REFERENCES

- Shaikh Abdul Aijaj Abdul Rahman, Girish Deshmukh: Seismic Response of Vertically Irregular RC Frame with Stiffness Irregularity at Fourth Floorll, Journal of Structural Engineering International Journal of Emerging Technology and Advanced Engineering Volume 3, Issue 8, August 2013)
- Ravikumar C M, Babu Narayan K S, Sujith B V, Venkat Reddy D., "Effect of Irregular Configurations on Seismic Vulnerability of RC Buildings", Architecture Research 2012, 2(3): 20-26
- Sadashiva V.K V. K., MacRae G. A. and Deam B. L.: "Determination Of Irregularity Limits", The 14th World Conference on Earthquake Engineering October 12-17, 2008, Beijing, China
- 4) Dr. Dubey S.K., Sangamnerkar P.D.: "Seismic Behaviour of Assymetric Rc Buildings", International Journal of Advanced Engineering Technology Vol.II October-December, 2011
- 5) C.M. Ravi Kumar, K.S. Babu Narayan, M.H. Prashanth, H.B Manjunatha and
- 6) D. Venkat Reddy, "Seismic Performance Evaluation of Rc Buildings With Vertical Irregularity", Indian Society of Earthquake

Technology Department of Earthquake Engineering Building IIT Roorkee, Roorkee October 20-21, 2012

- 7) Konakalla Ramesh, Ramesh Dutt Chilakapati, Dr. Harinadha Babu Raparla: "Effect of Vertical Irregularity in Multi-Storied Buildings Under Dynamic Loads Using Linear Static Analysis", International Journal of Education and applied research Vol. 4, Issue Spl-2, Jan -June 2014
- Sharma Mohit, Dr. Maru Savita, "Dynamic Analysis of Multi-storeyed Regular Building", IOSR Journal of Mechanical and Civil Engineering Volume 11, Issue 1 Ver. II (Jan. 2014)
- 9) Sapate Onkar V.: "Inter-Relationship between Moment Values of Columns in a Building with Different Architectural Complexities and Different Seismic Zones", International Journal of Engineering Research and Development Volume 5, Issue 2 (December 2012)
- 10) Nautiyal Prerna, Akhtar Saleem and Batham Geeta A., "Seismic Response Evaluation of RC frame building with Floating Column considering different Soil Conditions ", International Journal of Current Engineering and Technology Vol. 4, No.1 (February 2014)
- 11) Dennis C.K. Poon P.E., Managing Principal, Thornton Tomasetti: "Analysis and Design of a 47-story Reinforced Concrete Structure", -Futian Shangri-La Hotel Towerll
- Ravikumar C M, Babu Narayan K, Sujith B V, Venkat Reddy D: "Effect of Irregular Configurations on Seismic Vulnerability of RC Buildings", Architecture Research 2012, 2(3): pp. 20-26
- Eggert V. Valmundsson1 and James M. Nau/ Member, ASCE, "Seismic Response of Building Frames With Vertical Structural Irregularities", Journal of Structural Engineering / January 1997
- 14) Arlekar Jaswant N, Jain Sudhir K. and Murty C.V.R, (1997), "Seismic Response of RC Frame Buildings with Soft First Storey's", Proceedings of the CBRI Golden Jubilee Conference on Natural Hazards in Urban Habitat, New Delhi.

Corresponding Author

Mr. Ganesh K. Koshti*

PG Student, Civil Engineering Department, SVERI's College of Engineering, Pandharpur, Maharashtra