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Abstract - Using fixed point theorems, the primary objective of this study is to provide existence results 
and stability conditions for a class of fractional order differential equations. Existence findings are derived 
from Schauder's fixed point theorem and the Banach contraction principle. In addition, the use of 
Krasnoselskii's fixed point theorem to develop stability conditions for a particular class of fractional order 
differential equations is given a lot of attention. The usefulness of the stability result is shown via the use 
of an example. Through using the characteristics of -distance mappings and -admissible mappings, we 
present the idea of generalized contraction mappings and show the existence of a fixed-point theorem for 
such mappings. This is accomplished by mapping properties. In addition, we extend our conclusion to 
the theorems of coincidence point and common fixed point in metric spaces. Further, the fixed-point 
theorems that are endowed with an arbitrary binary relation may also be deduced from our conclusions 
thanks to this line of reasoning. 
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INTRODUCTION 

It is common knowledge that many problems in 
various subfields of mathematics may be converted 
into a fixed point problem of the form Tx = x for self-
mapping T defined on the framework of metric space 
(X, d). This transformation can be done in a variety of 
ways. Banach presented the idea of contraction 
mapping in 1992 and later proved the fixed point 
theorem for such mapping, which is now known as the 
Banach contraction principle. These contributions 
paved the way for more research and development in 
the area of analysis. A number of mathematical 
experts made use of a variety of conditions on self- 
mappings in order to demonstrate a number of fixed 
point theorems in metric spaces and other spaces. 

1969 saw the establishment of the fixed point theorem 
for multivalued contraction mapping by Nadler. This 
was accomplished by the use of the idea of Hausdorff 
metric, which is an extension of the traditional Banach 
contraction principle. After that, Kaneko generalized 
the findings of Jungck by extending the analogous 
findings of Nadler to include both single valued 
mapping and multivalued mapping. Following this, 
there are a number of findings that expand the scope 
of this conclusion in a variety of new ways. 

On the other hand, Kada and colleagues presented 
the idea of w-distance in relation to a metric space. 
They were able to enhance Caristi's fixed point 
theorem, Ekland's variational principle, and 
Takahashi's existence theorem by using this 
approach. After that, Suzuki and Takahashi came up 
with the fixed-point solution for the multivalued 

mapping with regard to the w-distance. In point of 
fact, this conclusion is an enhancement of the fixed-
point theorem proposed by Nadler. In the context of 
metric spaces, several mathematicians have used w 
distance to establish a number of fixed-point 
theorems; for example, see. Recently, Kutbi 
produced a helpful lemma for w-distance, which is 
an improved version of the lemma provided in, and 
demonstrated a crucial lemma on the presence of f-
orbit for extended f-contraction mappings. Both of 
these were accomplished by proving a key lemma 
on the existence of f-orbit. In addition to this, he 
demonstrated the existence of coincidence points as 
well as common fixed points for generalized f-
contraction mappings that did not include the 
extended Hausdorff metric. 

The objective of this study is to present the 
generalized w-contraction mapping and to 
demonstrate the fixed point theorem for such a 
mapping by utilizing the concept of -admissible 
mapping proposed by Mohammadi et al. This 
concept is a multivalued mapping version of -
admissible mapping proposed by Samet et al. and is 
distinct from the concept of -admissible that has 
been presented in. Our findings also have 
ramifications for the applications of coincidence point 
and common fixed-point theorems in metric spaces, 
as well as fixed point theorems endowed with an 
arbitrary binary relation. Our findings enhance and 
supplement the primary conclusion reached by Kutbi 
as well as several findings found in the 
aforementioned body of research. 
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 Fixed Point Theory in Metric Spaces 

OBJECTIVES OF THE STUDY 

1. To study on fixed point theorems 

2. To study on g-metric space by using clrg 
property 

FIXED POINT THEOREMS 

Fixed point theorems concern maps f of a set X into 

itself that, under certain conditions, admit a fixed 
point, that is, a point x X in such a way that f (x) = x. 
The knowledge that fixed points do in fact exist has 
important applications in a wide variety of subfields 
within analysis and topology. Let us demonstrate 
this by way of the following, which is a simple yet 
representative example. 

Example Let us assume that we have been 
provided with a set of n equations in n 
unknowns that are of the type. 

gj(x1, . . . , xn) = 0, j = 1, . . . , n 

where the gj are continuous real-valued functions 

of the real variables xj. Let hj(x1, . . . , xn) = gj(x1, 

. . . , xn) + xj, and for any point x = (x1, . . . , xn) 

define h(x)  =  (h1(x), . . . , hn(x)). Assume now 

that h has  a fixed-point x¯ ∈ Rn.    Then i t   is  easily 

seen that  x̄  is  a solution to the system of 

equations. 

In the next chapter, a number of different 
applications of fixed-point theorems will be 
discussed. 

THE BANACH CONTRACTION 
PRINCIPLE 

Definition Let X be a metric space equipped 

with a distance d. A map f : X →X is said to be 

Lipschitz continuous if there is λ ≥0 such that 

d(f (x1), f (x2)) ≤ λd(x1, x2), ∀x1, x2 ∈X. 

The smallest λ for which the above inequality 

holds is the Lipschitz constant of f .If λ ≤1 f is said 

to be non-expansive, if λ < 1 f is said to be a 

contraction. 

Theorem[Banach] Let f be a contraction on a 

complete metric space Then f has a unique fixed  

point  x̄ ∈X. 

PROOF Notice first that if x1, x2 ∈X are fixed 

points of f , then 

d(x1, x2) = d(f (x1), f (x2)) ≤λd(x1, x2) 

which imply x1 = x2. Choose now any x0 ∈ X, 

and define the iterate sequence 

xn+1 = f (xn). By induction on n, d(xn+1, xn) ≤ 

λ
n
d(f (x0), x0). 

If n ∈N and m ≥1, 

Hence   xn    is a  Cau ch y s e q u e n c e ,   and  

admits  a  limit   x̄  ∈ X,   for  X   is   complete. 
Since  f   is 

continuous, we have f (x̄) = limn f (xn) = limn 

xn+1  = x̄. 

Remark Notice that letting m →∞in (1) we find 
the relation 

 

Which  provides  a  control  on  the  convergence  rate  
of  xn   to  the  fixed  point  x̄ . The completeness of 

X is quite important to this scenario. In point 
of fact, contractions performed  on incomplete 
metric spaces may not have any fixed points. 

Example Let X  =  (0, 1]  with  the  usual  

distance.  Define f  : X X  as 

f (x) = x/2. 
→

 

Corollary Let X be a complete metric space 

and Y be a topological space. Let f : X Y X be 

a continuous funct×ion.→Assume that f is a 

contraction on X uniformly in Y , that  is, 

d(f (x1, y), f (x2, y)) ≤ λd(x1, x2), ∀ x1, x2 

∈ X, ∀ y ∈ Y 
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for some λ < 1. Then, for every fixed y ∈ Y , the map x 

›→ f (x, y) has a uniquefixed point ϕ(y). Moreover, the 

function y ›→ϕ(y) is continuous from Y to X. 

Notice that if f : X ×Y → X is continuous on Y 
and is a contraction on X uniformly in Y , then f 
is in fact continuous on X ×Y . 

PROOF In light of Theorem 1.3, we only have to 
prove the continuity of ϕ. For 

y, y0 ∈Y , we have 

Which implies? 

 

 

Since the above right-hand side goes to zero as y 
→ y0, we have the desired continuity. 

Remark If in addition Y is a metric space and f  is 
Lipschitz continuous in Y , uniformly  with respect to 
X, with Lipschitz constant L ≥ 0, then the function y 
›→ ϕ(y) is Lipschitz continuous with the Lipschitz 
constant being equal to or less than L/(1 −λ). 

The necessary condition that must be met by f in 
order to have a single fixed point is presented in 
Theorem. 

Example Consider the map 

 

Mapping onto itself. Then g is not even continuous, 
but it has a unique fixed point (x = 1/2). 

The following corollary takes into consideration 
the circumstances described above and 
demonstrates the existence of fixed points as well 
as their singularity under more broad conditions. 
Definition For f : X → X and n ∈ N, we denote by f

n
 

the n
th
 -iterate of f , namely, f ◦···◦f n-times (f 

0
 is the 

identity map). 

Corollary Let X  be a complete metric space and 

let f : X →X. If f
n
 is a contraction, for some n ≥1,  

then  f  has  a  unique  fixed  point  x̄ ∈X. 

PROOF Let  x̄   be the unique fixed point of f
n
,  

given by Theorem 1.3.  Then 

f
n
(f (x̄)) = f (f

n
(x̄)) = f (x̄), which implies f (x̄) = 

x̄.  Since a fixed point of f  is clearly a fixed point of 
f
n
, we have uniqueness as well 

Notice that in the example g
2
(x) ≡1/2. 

Additional examples of the contraction principle 

extensions There are a significant number of 

different extensions of Theorem that may be found 

in the academic literature. In this section, we will 

highlight certain findings. 

Theorem [Boyd-Wong] Let X be a complete 

metric space, and let f:  X  X. Assume there 

exists a right-continuous function ϕ: [0,  )  [0,   ) 

such that ϕ(r) < r if r > 0, and→ 

d(f (x1), f (x2)) ≤ ϕ(d(x1, x2)), ∀x1, 

x2 ∈X. 

∞ → ∞ 

Then f  has  a  unique  fixed  point  x̄  X.  

Moreover, for any  x0 X  the  

sequence 

f
n
(x0)  converges  to  x̄. ∈ ∈ 

Clearly, Theorem is a particular case of this 
result, for ϕ(r) = λr. 

PROOF IF x1, x2 ∈X are fixed points of f , then 

d(x1, x2) = d(f (x1), f (x2)) ≤ϕ(d(x1, x2)) 

so x1 = x2. To prove the existence, fix any x0 
∈ X, and define the iterate sequence xn+1 = f 

(xn). We show that xn is a Cauchy sequence, 

and the desired conclusion follows arguing 
like in the proof of Theorem. For n 1, define 
the positive sequence 

an =  d(xn, xn−1). ≥ 

It is clear that an+1 ≤ ϕ(an) ≤ an; therefore, an 
converges monotonically to some a ≥ 0. From 
the right- continuity of ϕ, we get a ≤ ϕ(a), which 

entails a = 0. Ifxn is not a Cauchy sequence, 

there is ε > 0 and integers mk > nk ≥k for 

every ≥1 such that 

dk   := d(xmk , xnk ) ≥ε, ∀k ≥1. 

In addition, upon choosing the smallest possible 
mk, we may assume that 
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d(xmk−1 , xnk ) < ε 

For k big enough (here we use the fact that an →0). 

Therefore, for k big enough, 

ε ≤dk  ≤d(xmk , xmk−1 ) + d(xmk−1 , xnk ) < amk 

+ ε 

Implying that dk →ε from above as k →∞ 

Moreover, 

dk ≤dk+1 + amk+1 + ank+1  ≤ϕ(dk) + amk+1  

+ ank+1 

and taking the limit as k → ∞ we obtain the 
relation ε ≤ ϕ(ε), which has to be false since ε > 
0. 

Theorem [Caristi] Let there be a full metric 

space denoted by X, and let there also be. f  : X 

→ X. Take it for granted that there is a lower 

semicontinuous function. ψ : X →[0, ∞) such that 

d(x, f (x)) ≤ψ(x) −ψ(f (x)), ∀x ∈ X. 

Then f has (at least) a fixed point in X. 

Again, Theorem 1.3 is a particular case, 
obtained for ψ(x) = d(x, f (x))/(1-λ). 

Notice that f need not be continuous. − 

PROOF WE PROVIDE AN INCOMPLETE 

ORDERING ON X, USING THE SETTING OF 

x ≤y if and only if d(x, y) ≤ψ(x) −ψ(y). 

Let ∅ /= X0 ⊂ X be totally ordered, and consider 

a sequence xn ∈ X0 such that 

ψ(xn) is decreasing to α := inf{ψ(x) : x ∈X0}. If n 

∈N and m ≥1, 

Hence xn is a Cauchy sequence, and admits a limit 

x∗ X, for  X  is complete.  Since ψ can only jump 

downwards (being lower semicontinuous), we also 

have ψ(x∗)∈ = α.   If x ∈ X0  and d(x, x∗) > 0, 

then it must be x ≤ xn for large n. Indeed, limn ψ(xn) 

= ψ(x∗)  ≤ ψ(x).  We conclude that x∗ is an upper 

bound for X0, and by the  Zorn lemma there exists 

a maximal  element x̄ .  On the other hand, x̄ ≤f (x̄), 
thus the maximality of x̄  forces the equality x̄  = f 

(x̄). ⬦ 

If we assume that function f is continuous, we get a 
conclusion that is somewhat more accurate, even if we 
relax the premise that function f is continuous on ψ. 

Theorem Let X be a complete metric space, and let 

f: X → X be a continuous map. Assume there exists 

a function ψ:  X →[0, ∞) such that 

d(x, f (x)) ≤ψ(x) −ψ(f (x)), ∀x ∈ X. 

Then f has a fixed point in X. Moreover, for 

any x0 X the sequence f
n
(x0) converges to 

a fixed point of f. ∈ 

PROOF Choose Due to∈e above 
condition, the sequence ψ (f

n
(x0)) is decreasing, 

and thus convergent. Reasoning as in the proof 
of the Caristi theorem, we get that fn(x0) admits 

a limit  x̄  ∈ X ,  for  X  is  complete.   The 
continuity of f then entails f (x̄) = limn f (f

n
(x0)) 

= x̄ . 

CONCLUSION 

Our study findings were based on numerous 
generalisations in the area of "fuzzy metric spaces 
(FMS)" as well as various "fixed point" outcomes in 
these spaces. A "fixed point" of a transformation is a 
point that stays unchanged throughout the 
transformation. In several domains, "fixed point 
theory" is primarily employed to explain equilibrium. 
It is crucial in differential equations, integral 
equations, partial differential equations, operator 
equations, and functional equations that occur in 
several fields such as financial mathematics, stability 
theory, economics, game theory, best 
approximation, and dynamic programming. The 
prominent mathematician Zadeh was familiar with 
the beneficial concept of "fuzzy sets" (1965). Later, 
fuzzy logic became the most powerful instrument in 
a variety of technological domains, including 
artificial intelligence, computer science, control 
engineering, medical science, and robotics, among 
others. Fuzzy set theory is a mathematical 
breakthrough that allows us to solve a variety of 
uncertain and real-world situations. Every item in 
fuzzy set theory has a "degree of membership" 
between Because it is impossible to compute 
distance functions with inexact values using 
traditional metric space theory, Kramosil and 
Michalek proposed the innovative concept of "fuzzy 
metric space (FMS)" to solve this issue (1975). 
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