
 
 

 

Munil Kumar Roy1*, Rajesh Kumar Sakale2 

w
w

w
.ig

n
it

ed
.in

 

486 
 

 
Journal of Advances and Scholarly Researches in Allied Education 
Vol. 20, Issue No. 4, October-2023, ISSN 2230-7540 
 

Inventory Models use of Fuzzy Theory 
 

Munil Kumar Roy1*, Rajesh Kumar Sakale2 

1 Research Scholar, Department of Mathematics LNCT University Bhopal M.P. 

Email:  jmsmathematicsdbg@gmail.com 

2 Supervisor, Department of Mathematics LNCT University Bhopal M.P. 

Email: rajeshsaklelnct@gmail.com 

Abstract - An essential part of optimising the supply chain is inventory management, but conventional 
models have a hard time taking into consideration the inherent uncertainties and inaccuracies in real-
world data. To make inventory models more accurate and resilient, fuzzy logic—a mathematical framework 
for dealing with ambiguity and uncertainty—offers a potential solution. Demand forecasting, lead time 
estimate, and order quantity determination are some of the inventory management components that are 
examined in this work as they pertain to fuzzy theory integration. There are a lot of reasons that make it 
hard to anticipate with any degree of accuracy how demand will change for different items. The fuzziness 
of demand patterns may be captured by using fuzzy demand forecasting approaches, which enable the 
representation of imprecise information. Our demand forecasting algorithm is built on fuzzy logic and 
incorporates expert views and historical data to make future demand predictions more accurate and 
flexible. 
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INTRODUCTION 

Elements may be either members of a set or non-
members; optimization solutions can be either 
practical or impractical; Computing and reasoning in 
formal modelling are also characterised by being crisp, 
predictable, and exact. Crisp denotes "yes" or "no" 
type, as opposed to "more" or "less" type. (Ding, H., 
2015) The parameters of a model precisely reflect 
either the characteristics of the actual system being 
modeled or how the phenomena being modeled is 
perceived. Typically, when a model is precise, it 
means it is free of ambiguities, or is very clear. 

It shows that when the model's structures and 
parameters are understood with certainty, there is no 
room for uncertainty about their values or occurrence. 
Assumptions made by a formal model, one that does 
not attempt to mimic reality, are, to some extent, 
arbitrary; that is, the model builder has considerable 
leeway to pick and choose which model features to 
include. (Chang, H. C. 2016)  But if the theory or 
model turns out to be true, then the language used for 
modeling has to be placed so it can accurately 
represent the situation's features. 

This issue would arise if a modeling language were 
both non-redundant and clear. Concepts in words are 
different from the mental processes that give rise to 
thoughts, visuals, and value systems in humans. 
(Bylka, S. 2019) Contrasted with rational reasoning, it 

falls short. As a result, it seems that there is no 
foolproof way to ensure a direct correspondence 
between the human mind's conceptualization of a 
problem and its corresponding mathematical or 
logical representation. (Chen, S. H. 2015) 

Now, let's think about the traits that real-world 
systems have. In many respects, real-life 
circumstances are frequently nebulous or 
unpredictable. (Bylka, S. 2019) The system may not 
be fully understood since there is a dearth of 
knowledge about the future. Probability theory and 
statistics are well-suited to deal with this issue. 
Nevertheless, the assertions or occurrences are 
presumed to be well-defined on both the 
Kolmogorov-type and Koopman's probability 
approaches. Unlike the "fuzziness" that pertains to 
the description of the semantic meaning of events, 
facts, or utterances, this kind of uncertainty or 
vagueness is stochastically uncertain.. 
(Kochenberger, G. A 2018) 

Areas that rely on human judgment, appraisal, and 
decision-making often use fuzzy logic. In his 
everyday speech, human thought is heavily 
embedded. (Goyal, S. K. 2016) Words are 
notoriously nebulous in any language. When used as 
a label for the set, the boundaries inside objects that 
do or do not belong to the set become fuzzy or 
imprecise, even if the word's meaning is well-
defined. Things like "birds," "tall men," and "beautiful 
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women" go all mushy. In the avian kingdom, bats are 
an outlier. (Hung-Chi Chang. 2016) 

Fuzzy Theory Basics 

 Overview of fuzzy logic 

Mathematically speaking, fuzzy logic is a way of 
thinking about and making decisions when there is a 
lot of room for error. Lotfi A. Zadeh first proposed it in 
the 1960s as a method to simulate human thinking and 
decision-making under conditions of imperfect and 
confusing data. (Osman, I. H. 2018) 

In fuzzy logic, "fuzziness"—the verbal expression of 
uncertainty—is the central notion. Fuzzy logic permits 
values between true and false, as opposed to the 
binary logic of yes/no, which only accepts absolute 
zeros and ones. Fuzzy sets and linguistic variables 
allow us to do this. (Hsu, W. K. 2019) 

The following are the main parts of fuzzy logic: 

 Fuzzy Sets: 
By extending the idea of classical (crisp) sets 
to include components with partial 
membership, fuzzy sets broaden their 
applicability. A membership degree, ranging 
from 0 to 1, is given to each element to 
indicate its level of set membership. (Yao, J. 
S. 2015) 

 Membership Functions: 
A fuzzy set's degree of membership is defined 
by a membership function. They determine an 
element's fit into a certain fuzzy set by 
mapping input values to membership degrees. 

 Fuzzy Rules: 
Fuzzy rules are expressions that describe the 
connections between two variables, one of 
which is an input and the other an output. To 
define the actions of the fuzzy logic system, 
these rules make use of language and if-then 
expressions. As an example, an air 
conditioner's output is powerful when the 
temperature is high. (Yuan, X. M. 2015) 

 Inference System: 
A fuzzy output is generated by the inference 
system after processing and combining the 
fuzzy rules. Fuzzy logic operators like AND, 
OR, and NOT are used to get the overall result 
by operating on fuzzy sets. 

 Fuzzy sets and membership functions 

A mathematical framework developed to deal with 
imprecision and uncertainty in thinking and decision-
making, fuzzy logic relies on fuzzy sets and 
membership functions as its foundational principles. A 
more effective alternative to conventional binary logic, 
fuzzy sets were first proposed by Lotfi A. Zadeh in the 
1960s and allowed for the representation and 
manipulation of information that is unclear or 
ambiguous. (Misra, R. B. 2016) 

Fuzzy Sets: 

Partially included components may be considered 
members of fuzzy sets, as opposed to classical sets 
that only permit inclusion or exclusion. Because of this, 
items may have membership values in a fuzzy set 
ranging from 0 to 1, indicating varied degrees of 
belongingness. The degree of membership shows how 
strongly an element is associated with the fuzzy set. 
Because models may be so versatile, they can capture 
the imprecision and ambiguity that characterize so 
many real-life situations. (Sosic, G. 2017) 

An individual's height, for instance, may have a 
membership degree of 0.7 in a fuzzy set that 
represents the category "tall," indicating a high level 
of affiliation but not total affiliation. 

Membership Functions: 

The form and properties of fuzzy sets are defined by 
membership functions, which are vital in fuzzy logic. 
These functions convert numerical inputs into the 
degrees to which they belong to a given fuzzy set. 
Membership functions often take the form of 
triangles, trapezoids, or even Gaussian curves. 
(Nagarajan, M., 2017) 

Imagine a fuzzy set that stands in for "temperature" 
and includes words like "cold," "warm," and "hot." 
These words' membership functions would take the 
input temperature into account while determining 
membership degrees. An example of a triangle 
membership function for the word "warm" would be a 
peak at a certain temperature followed by a slow 
drop as the temperature became warmer or cooler. 

 Fuzzy rules and inference systems 

To make decisions and reason in contexts where 
there is a lot of ambiguity and imprecision, fuzzy 
logic relies on inference systems and fuzzy rules. 
For fuzzy input data to become useful and actionable 
fuzzy output, several components are essential. 

Fuzzy Rules: 

To represent knowledge in a fuzzy logic system, one 
must first establish fuzzy rules. Usually using 
linguistic variables and terminology, they take the 
shape of conditional assertions. These rules use 
human-like reasoning to capture the links between 
input and output variables, reflecting the inherent 
ambiguity of many real-world events. 

"If the temperature is high and the humidity is high, 
then increase the cooling output." is one possible 
formulation of a fuzzy rule for an air conditioning 
system. "High" is a linguistically vague word linked to 
the specific input variables in this rule. ( Park, K. S. 
2019). 
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As an alternative to rigid binary logic, these rules 
provide a more flexible and human-understandable 
way for the system to solve problems based on less 
exact input. 

Inference Systems: 

By taking the fuzzy rules as inputs and processing 
them, the inference system may provide a fuzzy 
output. A complete fuzzy inference is derived by 
integrating several fuzzy rules. An inference system 
typically consists of three primary parts: (Hassini, E. 
2017) 

 Fuzzification: 
To use fuzzy logic, one must first determine 
the membership degrees of the input values 
using the relevant membership functions. This 
process transforms the data from crisp to 
fuzzy sets. The system can now handle 
language variables and fuzzy logic after this 
stage. 

 Rule Evaluation: 
To evaluate a rule, one must apply it to the 
fuzzified input values using the fuzzy rules and 
then find out how much of an impact each rule 
had on the final product. In this step, the 
antecedents and consequents of the fuzzy 
rules are combined using fuzzy logic operators 
like AND, OR, and NOT. 

 Aggregation: 
A single fuzzy output representing the 
system's decision or action is produced via 
aggregation, which combines the multiple rule 
outputs. Merging the fuzzy sets generated by 
each rule is a common practice that typically 
requires operators such as MAX or SUM. 

METHODOLOGY 

Inventory models play a crucial role in optimizing the 
balance between supply and demand in various 
industries. Fuzzy theory, a mathematical framework for 
dealing with uncertainty, has been applied to enhance 
traditional inventory models by incorporating 
imprecision and vagueness in decision-making 
processes 

Data Collection: 

Collect secondary data related to the historical 
demand patterns, lead times, and supplier 
performance. Ensure the data covers a sufficiently 
long period to capture variations and uncertainties. 

 Fuzzification of Data: 

Apply fuzzification techniques to convert precise data 
into fuzzy sets. For example, use linguistic terms to 
represent demand levels or fuzzy numbers to 
represent uncertain lead times. 

 

 Rule Base Development: 

Develop a rule base that describes the relationships 
between the fuzzy inputs (e.g., fuzzy demand, fuzzy 
lead time) and the fuzzy outputs (e.g., order quantity, 
reorder point) based on expert knowledge or historical 
data patterns. 

 Model Calibration and Validation: 
 Calibrate the fuzzy inventory model using 

historical data. Adjust the fuzzy sets and rule 
base parameters to best fit the observed data. 

 Validate the model by comparing its 
predictions with actual outcomes over a 
different period, ensuring its accuracy and 
reliability. 

RESULTS 

Fuzzy Set 

Each element in the Universal set is given a value of 
1 or 0 by the Crisp set's characteristic function, 
which distinguishes between elements that are 
members of the crisp set and those that are not. 

A fuzzy set is defined by 

 

In the classical set A, element x is the first member, 

and element y is the second member  to 
the set of all possible membership grades, which is 
on the interval [0, 1]. Another definition of the 
membership function is the extent to which x is 

compatible with or true in . As an expansion of 
the conventional concept of set, Zadeh (1965) 
created fuzzy sets. In classical set theory, each 
element may be classified as either belonging to the 
set or not belonging to the set; in other words, it can 
be expressed as a binary item. With the use of a 
membership function with a value in the real unit 
interval [0, 1], fuzzy set theory enables a progressive 
evaluation of an element's membership in a set. An 
expansion of classical set theory, fuzzy set theory 
allows components to have varying degrees of 
membership. 

Fuzzy number 

An improvement over a regular number, a fuzzy 
number may instead denote a linked collection of 
potential values, with a weight ranging from 0 to 1, 
rather than a single, definitive value. 

If a fuzzy subset α of R meets the following 
characteristics, it is referred to be a fuzzy number. 
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 α is an upper semi-continuous map  
 α [a] is nonempty for all a, 0 < a ≤ 1  
 α [0] is a bounded subset of R. 

Below is the visual depiction: 

 

 

 

Figure 1: The graphical representation 

A triangular fuzzy number is shown by the blue curve 
in Fig.1.1, a trapezoidal fuzzy number by the red 
curve, and a bell-shaped fuzzy number by the green 
curve. The grade begins at 0, grows to a maximum, 
and then decreases to zero again as the domain 
expands; all three of these functions are convex, and 
they are called membership functions. A membership 
function that is concave, irregular, or chaotic may be 
associated with a fuzzy number. As long as there is 
exactly one grade in the range that corresponds to 
each value in the domain and the grade is between 
zero and three hundred, the membership curve may 
take whatever form it wants. 

Triangular fuzzy number 

A triangular fuzzy number is a specific kind of fuzzy set 
that stands for numerical values that are uncertain or 
imprecise. There is some leeway for ambiguity or 

vagueness when representing a quantity using fuzzy 
numbers, as opposed to crisp or classical numbers 
with clear and well-defined values. Fuzzy logic 
systems often make use of triangle fuzzy numbers 
because of how easy they are. 

The three characteristics that define a triangle fuzzy 
number are its lower limit (on the left), its modal value 
(on the center or peak), and its upper bound (on the 
right). A membership function with three sides is 
defined by these parameters; it shows how likely it is 
that a given value falls inside the range. 

Triangular fuzzy numbers often have a membership 
function that looks like a triangle, with the modal value 
as the point of maximum membership and a linear 
drop as one approaches the lower and upper 
boundaries. The points representing the lowest, 
middle, and highest values are connected to form 
the triangle. 

By definition, a triangular fuzzy number has three 
possible values: the lower bound ('a'), the modal 
value ('b'), and the upper bound ('c'). Here is the 
definition of the membership function Γ(x): 

μ(x) = {0, if x < a, (x - a) / (b - a), 

if 

a ≤ x < b, (c - x) / (c - b), 

if 

b ≤ x ≤ c, 0, if x > c} 

Here, μ(x) represents the extent to which the value 
'x' is a member of the fuzzy set specified by the 
triangular fuzzy number. 

Fuzzy control systems, decision-making, and 
modeling scenarios involving uncertainty are among 
the many areas where triangle fuzzy numbers find 
utility. As a quantitative method, they provide an 
easy and obvious technique to deal with ambiguity 
and imprecision. 

Trapezoidal fuzzy number 

An extension of fuzzy numbers, a trapezoidal fuzzy 
number provides a more versatile way to express 
numerical values when there is some degree of 
uncertainty. Fuzzy logic systems and decision-
making processes use trapezoidal fuzzy numbers, 
which are similar to triangular fuzzy numbers, to 
describe imprecise or uncertain information. A 
trapezoidal fuzzy number differs from a triangular 
fuzzy number primarily in that the membership 
function takes the form of a trapezium. 

In mathematics, the diagonals (a, b, c, d) represent 
the four corners of a trapezoidal fuzzy number, with 
'a representing the left base, 'b' the left shoulder, 'c' 
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the right shoulder, and 'd' the right base. With these 
parameters, a membership function with a trapezoidal 
shape can be defined, which measures the likelihood 
of a value falling inside the given range. 

A trapezoidal fuzzy number's membership function 
μ(x) is defined piecewise using the four parameters: 

 

The degree to which the value 'x' is a member of the 
fuzzy set described by the trapezoidal fuzzy number is 
denoted by μ(x) in this formulation. 

There is a linear rise from 0 at x≤a to 1 at b in the 
trapezoidal membership function. The core or modal 
value of the fuzzy set, stays at 1 on the interval [b,c]. 
Then, on the interval (c,d), the membership function 
goes from 1 to 0 linearly. With the shoulders at b and c 
determining the fuzzy set's breadth, the resultant form 
resembles a trapezium. 

When it comes to representing uncertainty, trapezoidal 
fuzzy numbers are more flexible than triangular fuzzy 
numbers. This is because they can accommodate a 
larger range of values and asymmetric distributions. 
When dealing with data that is not perfectly accurate 
or symmetrical, this flexibility becomes quite useful. 

Among the many possible uses for trapezoidal fuzzy 
numbers are fuzzy control systems, decision-making in 
fuzzy settings, and the simulation of real-world 
situations involving intrinsically uncertain numerical 
quantities. They are useful in fuzzy logic and related 
areas because they can capture a wider range of 
uncertainty. 

Inventory control 

Some unforeseen and unexpected results may arise in 
actual production inventory issues, changing the 
demand rate of the products and, in turn, the 
production process schedule, making it more difficult 
to approach optimality. Consequently, as a result of 
carrying out various system manufacturing operations, 
the ideal solution is seldom identified precisely. 
Therefore, decision-makers have a hard time providing 
a single, exact figure to more truly reflect the likely and 
necessary parameters in production inventory issues; 
therefore, fuzzy numbers are used to address this 
obstacle. So, it seems that researching and 
addressing the production inventory issue in various 
channels is best accomplished using the fuzzy 
technique. It is more natural and practical. 

In production, maintenance, and company operations 
generally, inventory difficulties are prevalent. Several 
important expenses, such as those linked with 
shortages and setup, and demand might be fraught 
with uncertainty. Classical inventory models use 

probability theory to deal with uncertainties, which are 
seen as random events. 

Decisions in the construction sector are notoriously 
difficult to make without extensive training in the many 
different methods of construction management. 
Decisions are often imprecise and reliant on 
specialists' conceptual grasp of the project. Because 
of this, taking into account information that is both 
imprecise and unclear is crucial when making a 
choice. Achieving success in the construction sector 
depends on the capacity to make optimum decisions in 
the face of an unpredictable environment. The building 
project is affected by several aspects, both quantitative 
and qualitative, including the amount of equipment, the 
amount of available labor, and weather conditions. 

Artificial intelligence methods like expert systems, 
neural networks, and fuzzy sets may accommodate 
the uncertainties in the study. Because humans rely so 
heavily on approximations in everyday thinking, the 
effective use of fuzzy logic mirrors this reality. 

Data certainty, dependability, and accuracy are often 
illusions in real-world applications. A lot of the data 
obtained doesn't matter since there aren't many 
restrictions that determine the best solution to linear 
programming. 

The ability to handle ambiguous and imprecise data 
might significantly boost the spread and use of linear 
programming. Using probability distributions for this 
purpose has not been particularly fruitful. Fuzzy 
linear programs may be suggested as a way to cut 
down on information costs without resorting to 
unrealistic modeling. 

Fuzzy inventory models 

As a subfield of inventory management, fuzzy 
inventory models use fuzzy logic to account for data 
imprecision and uncertainty related to demand, 
supply, and other variables. Although uncertainties 
are common in real-world circumstances, traditional 
inventory models often use parameters with exact 
and predictable values. To get around this, fuzzy 
inventory models make use of fuzzy logic and fuzzy 
sets to describe and manipulate information that isn't 
perfectly exact. 

The fundamental principle of fuzzy inventory models 
is to represent demand, lead time, and order quantity 
as fuzzy numbers, which are associated with 
inventory. Fuzzy numbers provide a way to describe 
the fuzziness and lack of clarity around certain 
parameters. Because the input data is inherently 
inaccurate, the models use fuzzy logic to regulate 
inventory levels and make judgments. 

Fuzzy inventory models often use a fuzzy number to 
represent demand. Using the parameters (a, b, c) to 
build a triangle membership function, we may think 
of a fuzzy demand D. 
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The degree to which the value x is a member of the 
fuzzy demand set is represented by μD(x) in this 
equation. 

To accommodate for delivery time uncertainties, lead 
time or order processing time may alternatively be 
expressed as fuzzy numbers. With a trapezoidal 
membership function (a, b, c, d), the fuzzy lead time 
LT is defined as: 

 

To begin, let's pretend that we're working with a simple 
fuzzy inventory model. We'll use a triangle 
membership function to give the order quantity Q a 
fuzzy value. Taking into account fuzzy demand and 
fuzzy lead time, the objective is to find the ideal order 
amount that minimizes overall inventory costs. 

Fuzzy numbers may represent the total cost function 
TC, which takes into account a variety of expenses 
including holding, ordering, and scarcity: 

 

Holding costs (H(Q)), ordering costs (O(Q)), and 
shortfall costs (S(Q)) are defined here as functions of 
the fuzzy order quantity Q, respectively. 

To maximise TC(Q), the optimal total cost may be 
achieved by identifying the fuzzy order quantity ∏Q∏. 
When uncertainty is a major factor in inventory 
management, this optimization approach is 
appropriate because it takes the imprecision of 
demand, lead time, and order amount into account. 

By taking into account the uncertainties that exist in 
actual supply chain systems, fuzzy inventory models 
provide a more practical and adaptable method of 
inventory management. They provide a solid 
foundation for making choices with imperfect data, 
which in turn allows for more flexible and responsive 
inventory management solutions. 

CONCLUSION 

When dealing with the inherent uncertainties in supply 
chain and inventory management, including fuzzy 
theory in inventory models offers a more realistic and 
flexible approach. It helps decision-makers to better 
account for demand fluctuation, lead times, and other 
essential elements while recognizing the imperfect 
nature of data. More reliable and adaptable inventory 

management systems are the result of better decision-
making processes made possible by using fuzzy logic 
in inventory models. Companies thrive in unpredictable 
and ever-changing markets because fuzzy theory 
improves their capacity to adjust to new 
circumstances, which in turn boosts performance and 
delights customers. 
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