साहचर्य और गैर साहचर्य बीजगणितीय व्युत्पत्तियों पर अध्ययन
गैर-साहचर्य बीजगणित और विनबर्ग रिंग के व्युत्पत्ति
Keywords:
साहचर्य, गैर साहचर्य, बीजगणितीय व्युत्पत्तियों, R 2-टोशन मुक्त विनबर्ग, शक्ति साहचर्य, लेवी कारक, रेडिकल-शून्य, जड़ वाले वृक्ष, उत्तल सजातीय शंकु, गैर-साहचर्य बीजगणितAbstract
यह इस मामले के लिए एचसी म्युंग द्वारा प्राप्त ज्ञात परिणाम को सामान्यीकृत करता है कि R 2-टोशन मुक्त विनबर्ग (-1,1) अंगूठी है और शक्ति साहचर्य है। साथ ही यदि R का लेवी कारक C - R का एक आदर्श हो तो R का हल करने योग्य रेडिकल - शून्य है। ये परिणाम R-के रिडक्टिव केस के लिए लागू होते हैं। गणित और भौतिकी के कई क्षेत्रों में वाम सममित बीजगणित उत्पन्न होता है। जड़ वाले वृक्ष बीजगणित के संदर्भ में, उन्हें 1896 में केली द्वारा पहले ही पेश किया जा चुका है। फिर उन्हें लंबे समय तक भुला दिया गया जब तक कि 1960 में विनबर्ग और 1961 में कोज़ुल ने उन्हें उत्तल सजातीय शंकु और सजातीय फ्लैट मैनिफोल्ड के संदर्भ में पेश नहीं किया। निश्चित अपघटन L = M H के साथ रिडक्टिव पेयर (L,H) का विवरण और M के सापेक्ष एक रिडक्टिव विनबर्ग (-1,1) रिंग का निर्माण निर्दिष्ट सरल लाई बीजगणित के साथ गैर- साहचर्य बीजगणित के निर्माण पर आधारित है। D की व्युत्पत्ति प्राप्त होती है। एक विशेष मामले के रूप में विनबर्ग (-1,1) बीजगणित (A,∗) के आयाम 8 के साथ D = G2 का निर्माण किया जाता है और इसके संबंधित रिडक्टिव लाई बीजगणित L⁻ = A⁻ G2 निर्धारित किया जाता है।Downloads
Download data is not yet available.
Published
2021-07-01
Issue
Section
Articles
How to Cite
[1]
“साहचर्य और गैर साहचर्य बीजगणितीय व्युत्पत्तियों पर अध्ययन: गैर-साहचर्य बीजगणित और विनबर्ग रिंग के व्युत्पत्ति”, JASRAE, vol. 18, no. 4, pp. 1157–1162, July 2021, Accessed: Jan. 11, 2026. [Online]. Available: https://ignited.in/index.php/jasrae/article/view/13382






