Recent Developments and Future Prospects of Boro-Telluride Glass Research: A Review
Keywords:
boro-telluride glass, synthesis techniques, structural characterization, diverse applications, spectroscopy, microscopy, optoelectronics, photonics, solid-state batteries, photovoltaicsAbstract
The burgeoning field of boro-telluride glass research has witnessed remarkable growth inrecent years, marked by significant advancements in synthesis techniques, structural characterization,and diverse applications. This comprehensive review delves into the latest developments and futureprospects that define the landscape of boro-telluride glasses. The synthesis of boro-telluride glasseshas evolved beyond traditional methods, incorporating innovative approaches to tailor their compositionwith precision. This review explores the diverse strategies employed in the synthesis process,emphasizing their impact on the resulting glass structure and properties. Furthermore, structuralanalysis techniques, such as spectroscopy and microscopy, are scrutinized to elucidate the intricatearrangements of atoms within boro-telluride glasses, providing a deeper understanding of theirfundamental nature. The multifaceted applications of boro-telluride glasses are a focal point of thisreview, encompassing their utility in optoelectronics, photonics, and beyond. Insights into the opticaland electronic properties of these glasses underscore their potential in developing advanced photonicdevices and sensors. Additionally, the review investigates recent breakthroughs in utilizing borotellurideglasses for energy-related applications, exploring their role in emerging technologies like solidstatebatteries and photovoltaics. Looking forward, the review delineates the future prospects of borotellurideglass research, envisioning novel avenues for exploration and innovation. The potentialintegration of boro-telluride glasses in emerging technologies is highlighted, along with challenges thatmust be addressed to unlock their full potential. The collaborative efforts between researchers, industrystakeholders, and policymakers are essential in shaping the trajectory of boro-telluride glass research,paving the way for transformative applications in various scientific and technological domains. Inconclusion, this review consolidates recent developments in boro-telluride glass research, providing acomprehensive overview of the field and offering valuable insights into its future trajectory.References
Liping, H., Jason, N., John, K., Jay, B. (2008). Polyamorphic transitions in vitreous B2O3 under pressure. Journal of Physics: Condensed Matter, 20: 075107.
Ferlat, G., Seitsonen, A. P., Lazzeri, M., Mauri, F. (2012). Hidden polymorphs drive vitrification in B2O3. Nat Mater, 11: 925-929.
Johnson, P. A. V., Wright, A. C., Sinclair, R. N. (1982). A neutron diffraction investigation of the structure of vitreous boron trioxide. Journal of NonCrystalline Solids, 50: 281-311.
Goubeau, J. and Keller, H. (1953). RAMAN Spektren und Struktur von Boroxol Verbindungen. Zeitschriftfüranorganische und allgemeineChemie, 272: 303-312.
Snyder, L. C. and Wasserman, Z. (1980). On the structure and stability of bipyramidal B2O3. The Journal of Chemical Physics, 73: 998-999.
Strong, S. and Kaplow, R. (1968). The structure of crystalline B2O3. ActaCrystallographica Section B: Structural Crystallography and Crystal Chemistry, 24: 1032-1036.
Krogh-Moe, J. (1969). The structure of vitreous and liquid boron oxide. Journal of NonCrystalline Solids, 1: 269-284.
Galeener, F. (1982). Planar rings in glasses. Solid State Communications, 44: 10371040.
Prytula, A., Pohrelyuk, I., Fedirko, V. (2006). Interaction between amorphous boron and titanium alloys in a gaseous oxygen-containing medium. Materials Science, 42: 601-606.
Mozzi, R. L. and Warren, B. E. (1970). The structure of vitreous boron oxide. Journal of Applied Crystallography, 3(4): 251-257.
Hannon, A. C., Grimley, D. I., Hulme, R. A., Wright, A. C., Sinclair, R. N. (1994). Boroxol groups in vitreous boron oxide: new evidence from neutron diffraction and inelastic neutron scattering studies. Journal of Non-Crystalline Solids, 177: 299-316.
Jellison, G. E. and Bray, P. J. (1978). A Structural interpretation of B10 and B11 NMR spectra in sodium borate glasses. Journal of Non-Crystalline Solids, 29: 187206.
Walrafen, G., Chu, Y., Hokmabadi, M. (1990). Raman spectroscopic investigation of irreversibly compacted vitreous silica. The Journal of Chemical Physics, 92: 6987-7002.
Dunlevey, F. M. and Cooper, A. R. (1977). The Structure of Non-Crystalline Materials. Taylor and Francis, London.
Soppe, W., van der Marel, C., van Gunsteren, W. F., Den Hartog, H. W. (1988). New insights into the structure of B2O3 glass. Journal of Non-Crystalline Solids, 103: 201-209.
Bürger, H., Vogel, W., Kozhukharov, V., Marinov, M. (1984). Phase equilibrium, glassforming, properties and structure of glasses in the TeO2-B2O3 system. Journal of Materials Science, 19: 403-412.
Becker, P. (1999). Borate materials in nonlinear optics. Advanced Materials, 10: 979992.
Kaur, N. and Khanna, A. (2014). Structural characterization of borotellurite and alumino-borotellurite glasses. Journal of Non-Crystalline Solids, 404: 116-123.
Saddeek, Y. (2009). Effect of B2O3 on the structure and properties of tungsten tellurite glasses. Philosophical Magazine, 89: 41-54.
Maheshvaran, K., Veeran, P. K., Marimuthu, K. (2013). Structural and optical studies on Eu3+ doped boro-tellurite glasses. Solid State Sciences, 17: 54-62.
Shen, X., Nie, Q., Xu, T., Dai, S., Wang, X. (2007). Effect of B2O3 on luminescence of erbium doped tellurite glasses. SpectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy, 66: 389-393.
Yin, D.-d., Zheng, S.-c., Qi, Y.-w., Peng, S.-x., Zhou, Y.-x. (2013). Effect of B2O3 on the spectroscopic properties in Er3+/Ce3+ co-doped tellurite-niobium glass. Optoelectronics Letters, 9: 367-370.
Vasilopoulou, M., Douvas, A. M., Georgiadou, D. G., Palilis, L. C., Kennou, S., Sygellou, L., Soultati, A., Kostis, I., Papadimitropoulos, G., Davazoglou, D., Argitis, P. (2012). The Influence of Hydrogenation and Oxygen Vacancies on Molybdenum Oxides Work Function and Gap States for Application in Organic Optoelectronics. Journal of the American Chemical Society, 134: 16178-16187.
Fabian, M., Svab, E., &Krezhov, K. (2014). Neutron diffraction and RMC modeling of new amorphous molybdate system. Journal of Physics: Conference Series, 558: 012017.
Fabian, M., Svab, E., Krezhov, K. (2016). Network structure with mixed bond-angle linkages in MoO3 ZnO B2O3 glasses: Neutron diffraction and reverse Monte Carlo modelling. Journal of Non-Crystalline Solids, 433: 6-13.
Aswini, G. (1990). Electrical transport properties of molybdenum tellurite glassy semiconductors. Philosophical Magazine Part B, 61: 87-96.
Kozhukharov, V., Marinov, M., Grigorova, G. (1978). Glass-formation range in binary tellurite systems containing transition metal oxides. Journal of Non-Crystalline Solids, 28: 429-430.
Calas, G., Le Grand, M., Galoisy, L., Ghaleb, D. (2003). Structural role of molybdenum in nuclear glasses: an EXAFS study. Journal of Nuclear Materials, 322: 15-20.
El-Moneim, A. A. (2002). DTA and IR absorption spectra of vanadium tellurite glasses. Materials Chemistry and Physics, 73: 318-322.
Kaur, A., Khanna, A., Sathe, V., González, F., Ortiz, B. (2013). Optical, thermal, and structural properties of Nb2O5 TeO2 and WO3TeO2 glasses. Phase Transitions, 86: 598-619.
Sokolov, V. O., Plotnichenko, V. G., Koltashev, V. V., Grishin, I. A. (2009). On the structure of molybdate tellurite glasses. Journal of Non-Crystalline Solids, 355: 239-251.
Dimitriev, Y., Dimitrov, V., Bart, J. C. J., Arnaudov, M. (1981). Structure of Glasses of the TeO2 MoO3 System. Zeitschriftfüranorganische and allgemeineChemie, 479: 229-240.
Neov, S., Gerasimova, I., Sidzhimov, B., Kozhukharov, V., Mikula, P. (1988). Investigation of short-range atomic order in glasses from the MoO3-TeO2 system. Journal of Materials Science, 23: 347-352.
Mekki, A., Khattak, G. D., Wenger, L. E. (2005). Structural and magnetic properties of MoO3 TeO2 glasses. Journal of Non-Crystalline Solids, 351: 2493-2500.
Jose, R., Arai, Y., Ohishi, Y. (2008). Optical properties of MoO3 containing tellurite glasses. Applied Physics Letters, 93: 161901.
Manisha, P., Hirota, K., Tsujigami, Y., Sakata, H. (2001). Structural and electrical properties of MoO3 -TeO2 glasses. Journal of Physics D: Applied Physics, 34: 459.
Dimitriev, Y., Dimitrov, V., Bart, J. C. J., Arnaudov, M. (1981). Structure of Glasses of the TeO2 MoO3 System. Zeitschriftfüranorganische and allgemeineChemie, 479: 229-240.
Bajaj, A., Khanna, A., Chen, B., Longstaffe, J. G., Zwanziger, U. W., Zwanziger, J. W., Gómez, Y., González, F. (2009). Structural investigation of bismuth borate glasses and crystalline phases. Journal of Non-Crystalline Solids, 355: 45-53.
Wilding, M. C., Delaizir, G., Benmore, C. J., Gueguen, Y., Dolhen, M., Duclère, J.-R., Chenu, S., Sukenaga, S., McMillan, P. F. (2016). Structural studies of Bi2O3Nb2O5-TeO2 glasses. Journal of Non-Crystalline Solids.
Singh, S. P. and Karmakar, B. (2012). Bismuth oxide and bismuth oxide doped glasses for optical and photonic applications. New York: Nova, Hauppauge
Sanz, O., Haro-Poniatowski, E., Gonzalo, J., Fernández Navarro, J. M. (2006). Influence of the melting conditions of heavy metal oxide glasses containing bismuth oxide on their optical absorption. Journal of Non-Crystalline Solids, 352: 761-768.
Stone, C. E., Wright, A. C., Sinclair, R. N., Feller, S. A., Affatigato, M., Hogan, D. L., Nelson, N. D., Vira, C., Dimitriev, Y. B., Gattef, E. M., Ehrt, D. (2000). Structure of bismuth borate glasses. Physics and Chemistry of Glasses, 41: 409412.
Sontakke, A. D., Biswas, K., Tarafder, A., Sen, R., Annapurna, K. (2011). Broadband Er3+ emission in highly nonlinear Bismuth modified Zinc-Borate glasses. Optical Materials Express, 1: 344-356.