Theorem on Partial Symmetric Spaces

Authors

  • Bheem Singh Patel Department of Mathematics, Madhyanchal Professional University, Bhopal,M.P
  • Dr. Arun Garg Department of Mathematics, Madhyanchal Professional University, Bhopal,M.P

Keywords:

partial symmetric spaces, fixed point theorems, Hausdorff metric, Nadler contraction principle, existing literature

Abstract

In this paper, we first introduce the class of partial symmetric spaces and then prove somefixed point theorems in such spaces.We introduce an analogue of the Hausdorff metric in the context ofpartial symmetric spaces and utilize the same to prove an analogue of the Nadler contraction principle insuch spaces. Our results extend and improve many results in the existing literature. We also give someexamples exhibiting the utility of our newly established results.

References

Banach, S. Sur les operations dans les ensembles abstraitsetleur application aux equations integrals. Fund. Math. 1922, 3, 133–181.

Matthews, S.G. Partial metric topology. Ann. N. Y. Acad. Sci. 1994, 728, 183–197.

Amini-Harandi, A. Metric-like spaces, partial metric spaces and fixed points. Fixed Point Theory Appl. 2012, 2012, 204.

Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inf. Univ. Ostrav. 1993, 1, 5–11.

Branciari, A. A fixed point theorem of Banach–Caccioppoli type on a class of generalized metric spaces. Publ. Math. 2000, 57, 31–37.

Huang, L.G.; Zhang, X. Cone metric spaces and fixed point theorems of contractive mappings. J. Math. Anal. Appl. 2007, 332, 1468–1476.

Imdad, M.; Asim, M.; Gubran, R. Common fixed point theorems for g-Generalized contractive mappings in b-metric spaces. Indian J. Math. 2018, 60, 85–105. Axioms 2019, 8, 13 15 of 15

Ciric, L.B. A generalization of Banach’s contraction principle. Proc. Am. Math. Soc. 1974, 45, 267–273.

Mustafa, Z.; Roshan, J.R.; Parvaneh, V.; Kadelburg, Z. Some common fixed point results in ordered partial b-metric spaces. J. Inequal. Appl. 2013, 2013, 562.

Imdad, M.; Ali, J. Common fixed point theorems in symmetric spaces employing a new implicit function and common property (EA). Bull. Belg. Math. Soc. Simon Stev. 2009, 16, 421–433.

Jleli, M.; Samet, B. A generalized metric space and related fixed point theorems. Fixed Point Theory Appl. 2015, 2015, 61.

Wilson, W.A. On semi-metric spaces. Am. J. Math. 1931, 53, 361–373.

Nadler, S.B. Multivalued contraction mappings. Pac. J. Math. 1969, 30, 475–488.

Villa-Morales, J. Subordinate Semimetric Spaces and Fixed Point Theorems. J. Math. 2018, 2018, 7856594.

Downloads

Published

2023-07-01

How to Cite

[1]
“Theorem on Partial Symmetric Spaces”, JASRAE, vol. 20, no. 3, pp. 345–349, Jul. 2023, Accessed: Dec. 21, 2024. [Online]. Available: https://ignited.in/index.php/jasrae/article/view/14503

How to Cite

[1]
“Theorem on Partial Symmetric Spaces”, JASRAE, vol. 20, no. 3, pp. 345–349, Jul. 2023, Accessed: Dec. 21, 2024. [Online]. Available: https://ignited.in/index.php/jasrae/article/view/14503