Analysis of Efficient Ratiometric Fluorescent Chemodosimeter for detection of Phosgene

Authors

  • Satish Kumar Research Scholar, Deptt. of Chemistry, Magadh University Bodhgaya, Bihar Author
  • Dr. Sunil Kumar Assistant Professor, J.J. College, Gaya, Bihar Author

DOI:

https://doi.org/10.29070/5hgmmb52

Keywords:

Ratiometric fluorescent, Chemodosimeter, Phosgene R1, Molecular recognition, Gas chromatograpy

Abstract

The study has been analysed the “Efficient ratiometric fluorescent chemodosimeter for detection of phosgene”. Nature has provided many outstanding examples of Molecular identification. Molecular recognition that biological situations and is seen in receptor-ligand, sugar-lectin, DNA-protein, antigen-antibody, and RNA-ribosome interactions. In this survey most design strategies for phosgene detection must rely on PET/ICT on mechanisms. Another relevant approach in the area of molecular recognition is the chemiosmotic method. For the replaced A new receptor, 3-oxime-4-hydroxy-1,8-naphthalic-N-butylamide (R1) which has intramolecular protonation within excited state transfer (ESIPT), has been shown to be a suitable radiometric fluorescence sensor or phosgene parameterization will help in the form. Results was described the Design of molecule for detection of phosgene. Further the kinetic study solution of Kinetic Study of R1 in AcCN After solution phase chemodosimetric reactions, fluorescence spectra were measured after mixing R1, ET3N and triphosgene in a 3 mL cubic 4-sided quartz cell. The reaction was carried out with the separation of additional quantities of ordinary triphosgene (between 50.0 equivalents, where the initial concentration was [R1] << [+triphosgene]) at standard ambient temperature, and the reaction conversion and chemical species was 100%.

Downloads

Download data is not yet available.

References

Sciuto, A. M. Arch. Toxicol. 1998, 72, 283-288 .

B. J.; Rothwell, C. C.; Hoard-Fruchey, H. M.; Dillman, J. F.; Sciuto, A. M.; Anderson, D. R. Toxicol. Lett. 2016, 244, 8-20.

Sun, Y. Q.; Liu, J.; Zhang, H.; Huo, Y.; Lv, X.; Shi, Y.; Guo, W. J. Am. Chem. Soc. 2014, 136, 12520-12523.

He, L.; Yang, X.; Ren, M.; Kong, X.; Liu, Y.; Lin, W. Chem. Commun. 2016, 52, 9582-9585. 171.

Che, Y.; Yang, X.; Loser, S.; Zang, L.; Nano Lett. 2008, 8, 2219- 2223. (b) Genovese, M. E.; Colusso, E.; Colombo, M.; Martucci, A.; Athanassioua, A.; Fragouli, D. J. Mater. Chem. A 2017, 5, 339-348

Vij, V.; Bhalla, V.; Kumar, M.; ACS Appl. Mater. Interfaces 2013, 5, 5373-5380.

Pasquato, L.; Modena, G.; Cotarca, L.; Delogu, P.; Mantovani, S. J. Org. Chem. 2000, 65, 8224-8228.

Virji, S.; Kojima, R.; Fowler, J. D.; Villanueva, J. G.; Kaner, R. B.; B. Weiller, H. Nano Res. 2009, 2, 135-142.

Ouyang, Z.; Li, J.; Wang, J.; Li, Q.; Ni, T.; Zhang, X.; Wang, H.; Li, Q.; Su, Z.; Wei, G. J. Mater. Chem. B 2013, 1, 2415-2424.

Wolf, C.; Tscherner, M.; K¨ostler, S. Sens. Actuators B 2015, 209, 1064-1069.

Downloads

Published

2024-03-01