Analysis of Copper Niobate's Electrical Characteristics
Main Article Content
Authors
Abstract
Present lithium-ion battery technology's charge durations and energy densities greatly impede the development of fast-grid energy storage technologies, electric vehicle adoption, and reaction times. But fast charging requires strong currents, which polarize graphite and generate harmful side-reactions. Consistently preserving 99.98% of capacity between cycles, this material has incredible cycle speeds, a strong a very high Li+ diffusion coefficient of 1.8 × 10−12 cm2/s, and a pseudocapacitive response of up to 90%. Researching and creating materials with very fast anodes for potential use in energy storage devices: the need of abundant, non-toxic ingredients is shed light on by these findings.
Downloads
Download data is not yet available.
Article Details
Section
Articles
References
- Alkoy, Ebru & Berksoy-Yavuz, Ayse. (2012). Electrical Properties and Impedance Spectroscopy of Pure and Copper-Oxide-Added Potassium Sodium Niobate Ceramics. IEEE transactions on ultrasonics, ferroelectrics, and frequency control. 59. 2121-8. 10.1109/TUFFC.2012.2438.
- Arora, P., White, R. E., & Doyle, M. (1998). Capacity fade mechanisms and side reactions in lithium-ion batteries. Journal of The Electrochemical Society, 145(10), 3647–3667.
- Bahlawane, N., Lenoble, D., & Biedermann, K. (2015). Structural and functional properties of transition metal niobates. Advanced Functional Materials, 25(18), 2725–2733.
- Briggs, D., & Seah, M. P. (1990). Practical Surface Analysis: Auger and X-ray Photoelectron Spectroscopy. Wiley.
- Bruce, P. G., Scrosati, B., & Tarascon, J. M. (2008). Nanomaterials for rechargeable lithium batteries. Angewandte Chemie International Edition, 47(16), 2930–2946.
- Bruce, P. G., Scrosati, B., & Tarascon, J. M. (2008). Nanomaterials for rechargeable lithium batteries. Angewandte Chemie International Edition, 47(16), 2930–2946.
- Chen, C., Zhang, Y., & Wang, J. (2019). Crystal structure engineering of niobium oxides for lithium-ion storage. Energy Storage Materials, 20, 108–119.
- Cullity, B. D., & Stock, S. R. (2001). Elements of X-ray Diffraction (3rd ed.). Prentice Hall.
- D. P. Cann and C. A. Randall, “The thermochemistry and nonohmic electrical contacts of a BaTiO3 PTCR ceramic,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 44, no. 6, pp. 1405–1408, 1997.
- Dunn, B., Kamath, H., & Tarascon, J. M. (2011). Electrical energy storage for the grid: A battery of choices. Science, 334(6058), 928–935.
- E. Mensur Alkoy and M. Papila, “Microstructural features and electrical properties of copper oxide added potassium sodium niobate ceramics,” Ceram. Int., vol. 36, no. 6, pp. 1921–1927, 2010.
- Gao, X., Chen, C., & Goodenough, J. B. (2016). Niobium-based oxides for energy storage. Accounts of Chemical Research, 49(5), 873–881.
- Goldstein, J., Newbury, D. E., Joy, D. C., Lyman, C. E., Echlin, P., Lifshin, E., Sawyer, L., & Michael, J. R. (2017). Scanning Electron Microscopy and X-ray Microanalysis (4th ed.). Springer.
- Goodenough, J. B., & Kim, Y. (2010). Challenges for rechargeable Li batteries. Chemistry of Materials, 22(3), 587–603.
- Gorelik, V. & Palatnikov, M. & Pyatyshev, A. & Sidorov, N. & Skrabatun, Alexander. (2018). Optical Properties of Copper-Doped Lithium Niobate Crystals. Inorganic Materials. 54. 1013-1020. 10.1134/S0020168518100072.
- Griffith, K. J., Forse, A. C., Griffin, J. M., & Grey, C. P. (2019). High-rate intercalation without nanostructuring in metastable Nb₂O₅ bronze phases. Journal of the American Chemical Society, 141(44), 16706–16725.
- Griffith, K. J., Forse, A. C., Griffin, J. M., & Grey, C. P. (2019). High-rate intercalation without nanostructuring in metastable Nb₂O₅ bronze phases. Journal of the American Chemical Society, 141(44), 16706–16725.
- Han, X., Liu, Y., & Zhang, J. (2020). Structure design of mixed-metal niobates for advanced lithium-ion battery anodes. Journal of Materials Chemistry A, 8(12), 6102–6110. https://doi.org/10.1039/C9TA13591A
- Han, X., Liu, Y., & Zhang, J. (2020). Structure design of mixed-metal niobates for advanced lithium-ion battery anodes. Journal of Materials Chemistry A, 8(12), 6102–6110.
- Hu, Y. S., Yao, H., & Chen, L. (2021). Recent advances in crystal structure modulation for high-performance niobium-based battery anodes. Advanced Energy Materials, 11(28), 2100510.
- J. T. S. Irvine, D. C. Sinclair, and A. R. West, “Electro ceramics: Characterization by impedance spectroscopy,” Adv. Mater., vol. 2, no. 3, pp. 132–138, 1990.
- Kang, B., & Ceder, G. (2009). Battery materials for ultrafast charging and discharging. Nature, 458(7235), 190–193.
- Kang, B., & Ceder, G. (2019). Battery materials for ultrafast charging and discharging. Nature Materials, 18(4), 374–381.
- Kim, H., Park, K. Y., Hong, J., & Kang, K. (2021). Anomalous Li intercalation behavior in metal niobates. Advanced Energy Materials, 11(3), 2002480.
- Kim, S. J., et al. (2008). Microwave dielectric properties and luminescence of CaNb₂O₆ and MgNb₂O₆. Journal of Materials Science: Materials in Electronics, 19, 445–450.
- Kudo, A., & Hijii, S. (1994). Photocatalytic O₂ evolution under visible light irradiation on BiVO₄. Chemistry Letters, 23(10), 1987–1990.
- Lee, Y. H., Ryu, H., Kim, S., & Cho, J. (2015). Phase-pure synthesis and electrochemical evaluation of copper niobate-based materials for energy storage. Electro-chimica Acta, 153, 432–439. https://doi.org/10.1016/j.electacta.2014.12.043
- Lee, Y. H., Ryu, H., Kim, S., & Cho, J. (2015). Phase-pure synthesis and electrochemical evaluation of copper niobate-based materials for energy storage. Electro-chimica Acta, 153, 432–439.
- Li, Y., Liu, H., & Zhao, H. (2019). Crystal structure and lithium storage performance of CuNb₂O₆ polymorphs. Journal of Power Sources, 421, 103–112.
- Lily, K. Kumari, K. Prasad, and R. Choudhary, “Impedance spectroscopy of (Na0.5Bi0.5)(Zr0.25Ti0.75)O3 lead-free ceramic,” J. Alloy. Comp., vol. 453, no. 1–2, pp. 325–331, 2008.
- Liu, Y., Wang, J., & Zhao, S. (2020). High-rate capability and structural stability of CuNb₂O₆ electrodes for lithium-ion batteries. Electrochimica Acta, 330, 135274.
- Liu, Y., Zhang, X., & Zhao, H. (2020). Recent progress in ternary niobates for energy storage and photocatalysis. Journal of Energy Chemistry, 49, 76–89.
- Lowell, S., Shields, J. E., Thomas, M. A., & Thommes, M. (2012). Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Springer.
- M. A. L. Nobre and S. Lanfredi, “Dielectric loss and phase transition of sodium potassium niobate ceramic investigated by impedance spectroscopy,” Catal. Today, vol. 78, no. 1–4, pp. 529–538, 2003.
- M. Matsubara, T. Yamaguchi, K. Kikuta, and S. Hirano, “Sintering and piezoelectric properties of potassium sodium niobate ceramics with newly developed sintering aid,” Jpn. J. Appl. Phys., vol. 44, no. 1A, pp. 258–263, 2005.
- Narayanasamy, Priyadarshani & t.c, sabari girisun & Soma, Venugopal Rao. (2016). Investigation of the Femtosecond Optical Limiting Properties of Monoclinic Copper Niobate. Applied Physics B. 122. 10.1007/s00340-016-6529-2.
- Ohzuku, T., & Ueda, A. (1995). Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells. Journal of The Electrochemical Society, 142(5), 1431–1435.
- Q. Chen, L. Chen, Q. Li, X. Yue, D. Xiao, J. Zhu, X. Shi, and Z. Liu, “Piezoelectric properties of K4CuNb8O23 modified Na0.5K0.5NbO3 lead-free piezoceramics,” J. Appl. Phys., vol. 102, art. no. 104109, 2007.
- Rouquerol, F., Rouquerol, J., & Sing, K. (1994). Adsorption by Powders and Porous Solids: Principles, Methodology and Applications. Academic Press.
- S. Lanfredi and A. Rodrigues, “Impedance spectroscopy study of the electrical conductivity and dielectric constant of polycrystalline LiNbO3,” J. Appl. Phys., vol. 86, no. 4, pp. 2215–2219, 1999.
- S. Lee, K. Lee, J. Yoo, Y. Jeong, and H. Yoon, “Dielectric and piezoelectric properties of (K0.5Na0.5) (Nb0.97Sb0.03)O3 ceramics doped with K4CuNb8O23,” Trans. Electr. Electron. Mater., vol. 12, no. 2, pp. 72–75, 2011.
- Sharma, A., Gupta, V., & Singh, D. (2021). XPS investigation of transition metal states in Ni- and Cu-based oxides during lithium intercalation. Applied Surface Science, 558, 149897.
- Shen, Y., et al. (2012). Optical and luminescent properties of CaNb₂O₆ and MgNb₂O₆. Journal of Luminescence, 132(6), 1583–1588.
- Su, Mingru & Li, Meiqing & He, Kuidong & Wan, Tao & Chen, Xueli & Zhou, Yu & Zhang, Panpan & Dou, Aichun & Xu, Haolan & Lu, Chunsheng & Wang, Renheng & Chu, Dewei & Liu, Yunjian. (2022). Structure and Defect Strategy towards High-Performance Copper Niobate as Anode for Li-ion Batteries. Chemical Engineering Journal. 455. 140802. 10.1016/j.cej.2022.140802.
- Sun, Y., & Zhou, X. (2022). Engineering columbite-phase niobates for enhanced lithium-ion storage. Journal of Materials Chemistry A, 10(21), 11450–11460.
- Sun, Y., Liu, N., & Cui, Y. (2016). Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nature Energy, 1, 16071.
- Tarascon, J. M., & Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. Nature, 414(6861), 359–367.
- Toby, B. H., & Egami, T. (1990). Shear structures in niobium oxides. Acta Crystallographica Section B: Structural Science, 46(4), 480–490.
- V. Petrovsky, T. Petrovsky, S. Kamlapurkar, and F. Dogan, “Characterization of dielectric particles by impedance spectroscopy (Part I),” J. Am. Ceram. Soc., vol. 91, no. 6, pp. 1814–1816, 2008.
- Wang, J., Polleux, J., Lim, J., & Dunn, B. (2007). Pseudocapacitive contributions to electrochemical energy storage in TiO₂ (anatase) nanoparticles. The Journal of Physical Chemistry C, 111(40), 14925–14931.
- Wang, J., Polleux, J., Lim, J., & Dunn, B. (2007). Pseudocapacitive contributions to electrochemical energy storage in TiO₂ (anatase) nanoparticles. The Journal of Physical Chemistry C, 111(40), 14925–14931.
- Wang, Y., & Chen, J. (2022). Li-ion transport behavior in one-dimensional tunnel oxides: A crystallographic perspective. CrystEngComm, 24(5), 985–996.
- Wang, Y., Chen, Y., & Lou, X. W. D. (2019). Design of metal niobate anode materials for high-rate lithium-ion storage. Advanced Materials, 31(30), 1900473. https://doi.org/10.1002/adma.201900473
- Watanabe, M., Okada, S., & Yamaki, J. (2006). Effects of Nb₂O₅ polymorphs on lithium-ion intercalation properties. Solid State Ionics, 177(35–36), 3131–3135. https://doi.org/10.1016/j.ssi.2006.08.002
- Weppner, W., & Huggins, R. A. (1977). Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li₃Sb. Journal of The Electrochemical Society, 124(10), 1569–1578.
- Wu, H., Zhang, J., & Ding, Y. (2012). Crystal structure tuning in Nb-based oxides for enhanced lithium-ion storage. Journal of Power Sources, 206, 295–302. https://doi.org/10.1016/j.jpowsour.2012.01.087
- Wu, H., Zhang, J., & Ding, Y. (2012). Crystal structure tuning in Nb-based oxides for enhanced lithium-ion storage. Journal of Power Sources, 206, 295–302. https://doi.org/10.1016/j.jpowsour.2012.01.087
- Xu, L., & Li, X. (2018). Redox chemistry of niobium-based anode materials. Journal of Materials Science, 53(13), 9874–9883.
- Zhang, Q., & Lee, S. W. (2020). Niobium oxide polymorphs for battery applications. Advanced Functional Materials, 30(30), 2002871.
- Zhang, S. S. (2007). A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources, 162(2), 1379–1394.
- Zhang, S. S., Xu, K., & Jow, T. R. (2007). Electrochemical impedance study on the low temperature of Li-ion batteries. Electrochimica Acta, 52(11), 3870–3875.
- Zhou, G., Li, F., & Cheng, H. M. (2014). Progress in flexible lithium batteries and future prospects. Energy & Environmental Science, 7(4), 1307–1338.
- Zhou, J., Lu, Y., & Chen, Y. (2010). Ethanol-assisted synthesis of transition metal niobates and their lithium storage behavior. Materials Research Bulletin, 45(12), 1758–1764. https://doi.org/10.1016/j.materresbull.2010.09.010
- Zhou, X., Chen, L., & Lou, X. W. (2022). Design strategies for niobium-based oxides with tailored nanostructures for lithium-ion storage. Advanced Materials, 34(12), 2104446.
- Zhou, X., Chen, L., & Lou, X. W. (2022). Design strategies for niobium-based oxides with tailored nanostructures for lithium-ion storage. Advanced Materials, 34(12), 2104446.
- Zhuk, N. & Sekushin, Nikolay & Krzhizhanovskaya, M. & Selutin, Artem & Koroleva, Aleksandra & Badanina, Ksenia & Nekipelov, Sergey & Petrova, Olga & Victor, Sivkov. (2024). Photoelectron Spectroscopy Study of the Optical and Electrical Properties of Cr/Cu/Mn Tri-Doped Bismuth Niobate Pyrochlore. Sci. 7. 1. 10.3390/sci7010001.