Main Article Content

Authors

Anoop Kumar Udainia

Dr. Aftab Ahmad

Abstract

Present lithium-ion battery technology's charge durations and energy densities greatly impede the development of fast-grid energy storage technologies, electric vehicle adoption, and reaction times.   But fast charging requires strong currents, which polarize graphite and generate harmful side-reactions.   Consistently preserving 99.98% of capacity between cycles, this material has incredible cycle speeds, a strong a very high Li+ diffusion coefficient of 1.8 × 10−12 cm2/s, and a pseudocapacitive response of up to 90%. Researching and creating materials with very fast anodes for potential use in energy storage devices: the need of abundant, non-toxic ingredients is shed light on by these findings.

Downloads

Download data is not yet available.

Article Details

Section

Articles

References

  1. Alkoy, Ebru & Berksoy-Yavuz, Ayse. (2012). Electrical Properties and Impedance Spectroscopy of Pure and Copper-Oxide-Added Potassium Sodium Niobate Ceramics. IEEE transactions on ultrasonics, ferroelectrics, and frequency control. 59. 2121-8. 10.1109/TUFFC.2012.2438.
  2. Arora, P., White, R. E., & Doyle, M. (1998). Capacity fade mechanisms and side reactions in lithium-ion batteries. Journal of The Electrochemical Society, 145(10), 3647–3667.
  3. Bahlawane, N., Lenoble, D., & Biedermann, K. (2015). Structural and functional properties of transition metal niobates. Advanced Functional Materials, 25(18), 2725–2733.
  4. Briggs, D., & Seah, M. P. (1990). Practical Surface Analysis: Auger and X-ray Photoelectron Spectroscopy. Wiley.
  5. Bruce, P. G., Scrosati, B., & Tarascon, J. M. (2008). Nanomaterials for rechargeable lithium batteries. Angewandte Chemie International Edition, 47(16), 2930–2946.
  6. Bruce, P. G., Scrosati, B., & Tarascon, J. M. (2008). Nanomaterials for rechargeable lithium batteries. Angewandte Chemie International Edition, 47(16), 2930–2946.
  7. Chen, C., Zhang, Y., & Wang, J. (2019). Crystal structure engineering of niobium oxides for lithium-ion storage. Energy Storage Materials, 20, 108–119.
  8. Cullity, B. D., & Stock, S. R. (2001). Elements of X-ray Diffraction (3rd ed.). Prentice Hall.
  9. D. P. Cann and C. A. Randall, “The thermochemistry and nonohmic electrical contacts of a BaTiO3 PTCR ceramic,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 44, no. 6, pp. 1405–1408, 1997.
  10. Dunn, B., Kamath, H., & Tarascon, J. M. (2011). Electrical energy storage for the grid: A battery of choices. Science, 334(6058), 928–935.
  11. E. Mensur Alkoy and M. Papila, “Microstructural features and electrical properties of copper oxide added potassium sodium niobate ceramics,” Ceram. Int., vol. 36, no. 6, pp. 1921–1927, 2010.
  12. Gao, X., Chen, C., & Goodenough, J. B. (2016). Niobium-based oxides for energy storage. Accounts of Chemical Research, 49(5), 873–881.
  13. Goldstein, J., Newbury, D. E., Joy, D. C., Lyman, C. E., Echlin, P., Lifshin, E., Sawyer, L., & Michael, J. R. (2017). Scanning Electron Microscopy and X-ray Microanalysis (4th ed.). Springer.
  14. Goodenough, J. B., & Kim, Y. (2010). Challenges for rechargeable Li batteries. Chemistry of Materials, 22(3), 587–603.
  15. Gorelik, V. & Palatnikov, M. & Pyatyshev, A. & Sidorov, N. & Skrabatun, Alexander. (2018). Optical Properties of Copper-Doped Lithium Niobate Crystals. Inorganic Materials. 54. 1013-1020. 10.1134/S0020168518100072.
  16. Griffith, K. J., Forse, A. C., Griffin, J. M., & Grey, C. P. (2019). High-rate intercalation without nanostructuring in metastable Nb₂O₅ bronze phases. Journal of the American Chemical Society, 141(44), 16706–16725.
  17. Griffith, K. J., Forse, A. C., Griffin, J. M., & Grey, C. P. (2019). High-rate intercalation without nanostructuring in metastable Nb₂O₅ bronze phases. Journal of the American Chemical Society, 141(44), 16706–16725.
  18. Han, X., Liu, Y., & Zhang, J. (2020). Structure design of mixed-metal niobates for advanced lithium-ion battery anodes. Journal of Materials Chemistry A, 8(12), 6102–6110. https://doi.org/10.1039/C9TA13591A
  19. Han, X., Liu, Y., & Zhang, J. (2020). Structure design of mixed-metal niobates for advanced lithium-ion battery anodes. Journal of Materials Chemistry A, 8(12), 6102–6110.
  20. Hu, Y. S., Yao, H., & Chen, L. (2021). Recent advances in crystal structure modulation for high-performance niobium-based battery anodes. Advanced Energy Materials, 11(28), 2100510.
  21. J. T. S. Irvine, D. C. Sinclair, and A. R. West, “Electro ceramics: Characterization by impedance spectroscopy,” Adv. Mater., vol. 2, no. 3, pp. 132–138, 1990.
  22. Kang, B., & Ceder, G. (2009). Battery materials for ultrafast charging and discharging. Nature, 458(7235), 190–193.
  23. Kang, B., & Ceder, G. (2019). Battery materials for ultrafast charging and discharging. Nature Materials, 18(4), 374–381.
  24. Kim, H., Park, K. Y., Hong, J., & Kang, K. (2021). Anomalous Li intercalation behavior in metal niobates. Advanced Energy Materials, 11(3), 2002480.
  25. Kim, S. J., et al. (2008). Microwave dielectric properties and luminescence of CaNb₂O₆ and MgNb₂O₆. Journal of Materials Science: Materials in Electronics, 19, 445–450.
  26. Kudo, A., & Hijii, S. (1994). Photocatalytic O₂ evolution under visible light irradiation on BiVO₄. Chemistry Letters, 23(10), 1987–1990.
  27. Lee, Y. H., Ryu, H., Kim, S., & Cho, J. (2015). Phase-pure synthesis and electrochemical evaluation of copper niobate-based materials for energy storage. Electro-chimica Acta, 153, 432–439. https://doi.org/10.1016/j.electacta.2014.12.043
  28. Lee, Y. H., Ryu, H., Kim, S., & Cho, J. (2015). Phase-pure synthesis and electrochemical evaluation of copper niobate-based materials for energy storage. Electro-chimica Acta, 153, 432–439.
  29. Li, Y., Liu, H., & Zhao, H. (2019). Crystal structure and lithium storage performance of CuNb₂O₆ polymorphs. Journal of Power Sources, 421, 103–112.
  30. Lily, K. Kumari, K. Prasad, and R. Choudhary, “Impedance spectroscopy of (Na0.5Bi0.5)(Zr0.25Ti0.75)O3 lead-free ceramic,” J. Alloy. Comp., vol. 453, no. 1–2, pp. 325–331, 2008.
  31. Liu, Y., Wang, J., & Zhao, S. (2020). High-rate capability and structural stability of CuNb₂O₆ electrodes for lithium-ion batteries. Electrochimica Acta, 330, 135274.
  32. Liu, Y., Zhang, X., & Zhao, H. (2020). Recent progress in ternary niobates for energy storage and photocatalysis. Journal of Energy Chemistry, 49, 76–89.
  33. Lowell, S., Shields, J. E., Thomas, M. A., & Thommes, M. (2012). Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Springer.
  34. M. A. L. Nobre and S. Lanfredi, “Dielectric loss and phase transition of sodium potassium niobate ceramic investigated by impedance spectroscopy,” Catal. Today, vol. 78, no. 1–4, pp. 529–538, 2003.
  35. M. Matsubara, T. Yamaguchi, K. Kikuta, and S. Hirano, “Sintering and piezoelectric properties of potassium sodium niobate ceramics with newly developed sintering aid,” Jpn. J. Appl. Phys., vol. 44, no. 1A, pp. 258–263, 2005.
  36. Narayanasamy, Priyadarshani & t.c, sabari girisun & Soma, Venugopal Rao. (2016). Investigation of the Femtosecond Optical Limiting Properties of Monoclinic Copper Niobate. Applied Physics B. 122. 10.1007/s00340-016-6529-2.
  37. Ohzuku, T., & Ueda, A. (1995). Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells. Journal of The Electrochemical Society, 142(5), 1431–1435.
  38. Q. Chen, L. Chen, Q. Li, X. Yue, D. Xiao, J. Zhu, X. Shi, and Z. Liu, “Piezoelectric properties of K4CuNb8O23 modified Na0.5K0.5NbO3 lead-free piezoceramics,” J. Appl. Phys., vol. 102, art. no. 104109, 2007.
  39. Rouquerol, F., Rouquerol, J., & Sing, K. (1994). Adsorption by Powders and Porous Solids: Principles, Methodology and Applications. Academic Press.
  40. S. Lanfredi and A. Rodrigues, “Impedance spectroscopy study of the electrical conductivity and dielectric constant of polycrystalline LiNbO3,” J. Appl. Phys., vol. 86, no. 4, pp. 2215–2219, 1999.
  41. S. Lee, K. Lee, J. Yoo, Y. Jeong, and H. Yoon, “Dielectric and piezoelectric properties of (K0.5Na0.5) (Nb0.97Sb0.03)O3 ceramics doped with K4CuNb8O23,” Trans. Electr. Electron. Mater., vol. 12, no. 2, pp. 72–75, 2011.
  42. Sharma, A., Gupta, V., & Singh, D. (2021). XPS investigation of transition metal states in Ni- and Cu-based oxides during lithium intercalation. Applied Surface Science, 558, 149897.
  43. Shen, Y., et al. (2012). Optical and luminescent properties of CaNb₂O₆ and MgNb₂O₆. Journal of Luminescence, 132(6), 1583–1588.
  44. Su, Mingru & Li, Meiqing & He, Kuidong & Wan, Tao & Chen, Xueli & Zhou, Yu & Zhang, Panpan & Dou, Aichun & Xu, Haolan & Lu, Chunsheng & Wang, Renheng & Chu, Dewei & Liu, Yunjian. (2022). Structure and Defect Strategy towards High-Performance Copper Niobate as Anode for Li-ion Batteries. Chemical Engineering Journal. 455. 140802. 10.1016/j.cej.2022.140802.
  45. Sun, Y., & Zhou, X. (2022). Engineering columbite-phase niobates for enhanced lithium-ion storage. Journal of Materials Chemistry A, 10(21), 11450–11460.
  46. Sun, Y., Liu, N., & Cui, Y. (2016). Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nature Energy, 1, 16071.
  47. Tarascon, J. M., & Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. Nature, 414(6861), 359–367.
  48. Toby, B. H., & Egami, T. (1990). Shear structures in niobium oxides. Acta Crystallographica Section B: Structural Science, 46(4), 480–490.
  49. V. Petrovsky, T. Petrovsky, S. Kamlapurkar, and F. Dogan, “Characterization of dielectric particles by impedance spectroscopy (Part I),” J. Am. Ceram. Soc., vol. 91, no. 6, pp. 1814–1816, 2008.
  50. Wang, J., Polleux, J., Lim, J., & Dunn, B. (2007). Pseudocapacitive contributions to electrochemical energy storage in TiO₂ (anatase) nanoparticles. The Journal of Physical Chemistry C, 111(40), 14925–14931.
  51. Wang, J., Polleux, J., Lim, J., & Dunn, B. (2007). Pseudocapacitive contributions to electrochemical energy storage in TiO₂ (anatase) nanoparticles. The Journal of Physical Chemistry C, 111(40), 14925–14931.
  52. Wang, Y., & Chen, J. (2022). Li-ion transport behavior in one-dimensional tunnel oxides: A crystallographic perspective. CrystEngComm, 24(5), 985–996.
  53. Wang, Y., Chen, Y., & Lou, X. W. D. (2019). Design of metal niobate anode materials for high-rate lithium-ion storage. Advanced Materials, 31(30), 1900473. https://doi.org/10.1002/adma.201900473
  54. Watanabe, M., Okada, S., & Yamaki, J. (2006). Effects of Nb₂O₅ polymorphs on lithium-ion intercalation properties. Solid State Ionics, 177(35–36), 3131–3135. https://doi.org/10.1016/j.ssi.2006.08.002
  55. Weppner, W., & Huggins, R. A. (1977). Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li₃Sb. Journal of The Electrochemical Society, 124(10), 1569–1578.
  56. Wu, H., Zhang, J., & Ding, Y. (2012). Crystal structure tuning in Nb-based oxides for enhanced lithium-ion storage. Journal of Power Sources, 206, 295–302. https://doi.org/10.1016/j.jpowsour.2012.01.087
  57. Wu, H., Zhang, J., & Ding, Y. (2012). Crystal structure tuning in Nb-based oxides for enhanced lithium-ion storage. Journal of Power Sources, 206, 295–302. https://doi.org/10.1016/j.jpowsour.2012.01.087
  58. Xu, L., & Li, X. (2018). Redox chemistry of niobium-based anode materials. Journal of Materials Science, 53(13), 9874–9883.
  59. Zhang, Q., & Lee, S. W. (2020). Niobium oxide polymorphs for battery applications. Advanced Functional Materials, 30(30), 2002871.
  60. Zhang, S. S. (2007). A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources, 162(2), 1379–1394.
  61. Zhang, S. S., Xu, K., & Jow, T. R. (2007). Electrochemical impedance study on the low temperature of Li-ion batteries. Electrochimica Acta, 52(11), 3870–3875.
  62. Zhou, G., Li, F., & Cheng, H. M. (2014). Progress in flexible lithium batteries and future prospects. Energy & Environmental Science, 7(4), 1307–1338.
  63. Zhou, J., Lu, Y., & Chen, Y. (2010). Ethanol-assisted synthesis of transition metal niobates and their lithium storage behavior. Materials Research Bulletin, 45(12), 1758–1764. https://doi.org/10.1016/j.materresbull.2010.09.010
  64. Zhou, X., Chen, L., & Lou, X. W. (2022). Design strategies for niobium-based oxides with tailored nanostructures for lithium-ion storage. Advanced Materials, 34(12), 2104446.
  65. Zhou, X., Chen, L., & Lou, X. W. (2022). Design strategies for niobium-based oxides with tailored nanostructures for lithium-ion storage. Advanced Materials, 34(12), 2104446.
  66. Zhuk, N. & Sekushin, Nikolay & Krzhizhanovskaya, M. & Selutin, Artem & Koroleva, Aleksandra & Badanina, Ksenia & Nekipelov, Sergey & Petrova, Olga & Victor, Sivkov. (2024). Photoelectron Spectroscopy Study of the Optical and Electrical Properties of Cr/Cu/Mn Tri-Doped Bismuth Niobate Pyrochlore. Sci. 7. 1. 10.3390/sci7010001.