The extended jacobi polynomials in two variables: A generalization
Main Article Content
Authors
Abstract
This work presents an extension of the Jacobi polynomials to two variables and generates a number of generating functions. In addition, certain applications of Jacobi polynomials are examined, along with Bateman's and Brafman's generating functions, Rodrigues formula, and the relationship between Legendre and Jacobi polynomials. The main objective of this study is to construct and describe certain properties of an analogue of extended Jacobi polynomials that operates on two variables. The authors provide recurrence relations that use extended ϱJacobi polynomials in two variables, along with a variety of differential equations for these polynomials.
Downloads
Download data is not yet available.
Article Details
Section
Articles
References
- Aktaş, Rabia & Erkus-Duman, Esra. (2015). A generalization of the extended Jacobi polynomials in two variables. 28. 503-521.
- Genest, Vincent & Lemay, Jean-Michel & Vinet, Luc & Zhedanov, Alexei. (2015). Two-variable -1 Jacobi polynomials. Integral Transforms and Special Functions. 26. 1-15. 10.1080/10652469.2015.1013034.
- Xu, Yuan. (2014). Hahn, Jacobi, and Krawtchouk polynomials of several variables. Journal of Approximation Theory. 195. 10.1016/j.jat.2014.03.013.
- Aktaş, Rabia. (2014). A note on parameter derivatives of the Jacobi polynomials on the triangle. Applied Mathematics and Computation. 247. 368–372. 10.1016/j.amc.2014.08.102.
- Ali, Asad. (2021). Two variables generalized Laguerre polynomials. Carpathian Mathematical Publications. 13. 134-141. 10.15330/cmp.13.1.134-141.
- Aktaş, R., Altın, A. and Taşdelen, F., "A note on a family of two-variable polynomials", Journal of Computational and Applied Mathematics, 235: 4825- 4833, (2011).
- Aktaş, R. and Erkuş-Duman, E., "The Laguerre polynomials in several variables", Mathematica Slovaca, 63(3): 531-544, (2013).
- Aktaş, R. and Erkuş-Duman, E., "On a family of multivariate modified Humbert polynomials", The Scientific World Journal, 2013: 1-12, (2013).
- Altın, A., Aktaş, R. and Erkuş-Duman, E. "On a multivariable extension for the extended Jacobi polynomials", J. Math. Anal. Appl. 353: 121-133, (2009).
- Altın, A. and Erkuş, E., "On a multivariable extension of the Lagrange-Hermite polynomials", Integral Transform. Spec. Funct. 17: 239-244, (2006).
- Appell, P. and Kampé de Fériet, J., "Fonctions Hypergéométriques et Hyperspériques: Polynomes d'Hermite". Gauthier-Villars, Paris, (1926).
- Bailey, W. N. , "Generalized Hypergeometric Series", Cambridge Math. Tract No. 32, Cambridge Univ. Press, Cambridge, (1935).
- Carlitz, L., "An integral for the product of two Laguerre polynomials", Boll. Un. Mat. Ital. (3), 17 : 25- 28, (1962).
- Dunkl, C.F., and Xu, Y., "Orthogonal polynomials of several variables", Cambridge Univ. press, New York, (2001).
- Erkuş-Duman, E., Altın, A. and Aktaş, R., "Miscellaneous properties of some multivariable polynomials", Mathematical and Computer Modelling, 54: 1875-1885,