A Comparative Review of Structural, Electrical, and Magnetic Properties of Bulk Versus thin Film Functional Oxide Materials
Main Article Content
Authors
Abstract
Functional oxide materials have garnered significant research attention owing to their adjustable structural, electrical, and magnetic characteristics, rendering them suitable for diverse applications such as microelectronics, memory storage, spintronics, sensors, and energy devices. These characteristics are significantly influenced by the morphology and dimensionality of the material, particularly regarding whether the oxide is in bulk or thin film form. This paper thoroughly examines and contrasts the structure–property correlations in both bulk and thin film functional oxides, focussing specifically on perovskite, spinel, and columbite-type materials. Significant distinctions in crystallographic orientation, grain boundaries, phase purity, defect density, and anisotropic phenomena are examined concerning their impact on dielectric properties, electrical conductivity, ferroelectric behaviour, and magnetic characteristics. The examination includes synthesis procedures, characterisation tools, and application relevance. This study seeks to elucidate design options for enhancing performance via morphology management, hence informing the future advancement of oxide-based electrical and magnetic devices.
Downloads
Article Details
Section
References
- Ahn, C. H., Triscone, J. M., & Mannhart, J. (2003). Electric field effect in correlated oxide systems. Nature, 424(6952), 1015–1018.
- Bhalla, A. S., Guo, R., & Roy, R. (2000). The perovskite structure A review of its role in ceramic science and technology. Materials Research Innovations, 4(1), 3–26.
- Chakraborty, D., Singh, R., & Chattopadhyay, K. K. (2022). Structural and magnetic properties of columbite-type ZnNb₂O₆ thin films. Journal of Magnetism and Magnetic Materials, 548, 168909.
- Chakraborty, P., Suresh, K. G., & Nigam, A. K. (2022). Antiferromagnetism and strain-modulated magnetism in ZnNb₂O₆: A comparative study of bulk and thin films. Journal of Applied Physics, 132(4), 043902.
- Chen, Y., Zhang, Y., & Sun, Z. (2020). Microwave dielectric properties of ZnNb₂O₆ thin films for communication device applications. Ceramics International, 46(2), 2594–2600.
- Chen, Z., Wu, Y., & He, J. (2020). Dielectric properties of ZnNb₂O₆ ceramics for microwave applications. Ceramics International, 46(2), 2391–2398.
- Choi, K. J., Biegalski, M., Li, Y. L., Sharan, A., Schubert, J., Uecker, R., ... & Eom, C. B. (2004). Enhancement of ferroelectricity in strained BaTiO₃ thin films. Science, 306(5698), 1005–1009.
- Dagotto, E. (2005). Complexity in strongly correlated electronic systems. Science, 309(5732), 257–262.
- Eerenstein, W., Mathur, N. D., & Scott, J. F. (2006). Multiferroic and magnetoelectric materials. Nature, 442(7104), 759–765.
- Haeni, J. H., Irvin, P., Chang, W., Uecker, R., Reiche, P., Li, Y. L., ... & Schlom, D. G. (2004). Room-temperature ferroelectricity in strained SrTiO₃. Nature, 430(7001), 758–761.
- Kalinin, S. V., & Spaldin, N. A. (2013). Functional ion defects in transition metal oxides. Science, 341(6148), 858–859.
- Karthik, J., & Martin, L. W. (2017). Manipulation of ferroelectricity in epitaxial thin films via strain engineering. Nano Letters, 17(8), 5956–5961.
- Karthik, J., & Martin, L. W. (2017). Thickness-dependent properties in nanoscale ferroelectrics and multiferroics. Journal of Materials Research, 32(2), 436–449.
- Kim, D. J., Lu, H., Ryu, S., Bark, C. W., Eom, C. B., & Gruverman, A. (2012). Ferroelectric switching dynamics of individual grains in polycrystalline thin films. Advanced Materials, 24(26), 3309–3313.
- Kumar, A., Sharma, P., & Singh, M. (2021). Comparative study of bulk and thin film ZnO for optoelectronic applications. Materials Today: Proceedings, 47, 350–355.
- Kumar, R., Patel, M., & Singh, A. (2021). Enhanced electrical and optical properties of c-axis oriented ZnO thin films for transparent electronics. Materials Today: Proceedings, 46, 598–604.
- Lee, D., & Ramesh, R. (2020). Strain-engineered perovskite oxide thin films. Nature Reviews Materials, 5(3), 157–176.
- Li, M., Yin, Y., He, H., Liu, L., & Shen, B. (2020). Dielectric properties and energy storage performance of ZnNb₂O₆-based ceramics. Journal of the European Ceramic Society, 40(4), 1434–1441.
- Lines, M. E., & Glass, A. M. (1977). Principles and applications of ferroelectrics and related materials. Oxford University Press.
- Liu, Y., Wang, X., & Zhang, X. (2018). Advances in thin film dielectric materials. Journal of Applied Physics, 123(23), 230902.
- Liu, Z., Chen, H., & Wang, Z. (2018). High-κ dielectric thin films via atomic layer deposition: Recent developments and perspectives. ACS Applied Materials & Interfaces, 10(19), 16670–16684.
- Nan, C. W., Bichurin, M. I., Dong, S., Viehland, D., & Srinivasan, G. (2017). Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. Journal of Applied Physics, 103(3), 031101.
- Ramesh, R., & Schlom, D. G. (2019). Emerging routes to oxide electronics. MRS Bulletin, 44(10), 734–741.
- Ramesh, R., & Spaldin, N. A. (2007). Multiferroics: Progress and prospects in thin films. Nature Materials, 6(1), 21–29.
- Schlom, D. G., Chen, L. Q., Pan, X., Schmehl, A., & Zurbuchen, M. A. (2008). A thin film approach to engineering functionality into oxides. Journal of the American Ceramic Society, 91(8), 2429–2454.
- Scott, J. F. (2007). Applications of modern ferroelectrics. Science, 315(5814), 954–959.
- Sharma, N., & Patel, R. (2017). Dielectric and electrical characterization of ferroelectric thin films. Journal of Advanced Dielectrics, 7(2), 1750012.
- Sharma, S., & Patel, P. (2017). Influence of interface layers on dielectric behavior of ferroelectric thin films. Journal of Materials Science: Materials in Electronics, 28(18), 13625–13631.
- Singh, K., Gupta, A., & Raj, R. (2021). Grain boundary effects on nanostructured thin film oxides. Materials Chemistry and Physics, 264, 124493.
- Tanaka, H., Yoshimoto, M., & Kawai, T. (2020). Non-equilibrium phase formation in oxide thin films. Applied Surface Science, 526, 146765.
- Wang, C., Zhao, S., Xue, F., Huang, Y., Liu, Y., & Zhou, Z. (2021). Strain-tunable dielectric response of epitaxial perovskite oxide films. Applied Physics Letters, 119(14), 142901.
- Wang, Y., Zhang, Z., & He, D. (2022). Charge transport and interface engineering in oxide thin films. Advanced Functional Materials, 32(5), 2108579.
- Wang, Y., Zhou, H., & Yang, L. (2022). Charge transport in oxide thin films under strain-engineered interfaces. Advanced Functional Materials, 32(12), 2109443.
- Zhang, L., Chen, D., & Wu, Y. (2019). Surface and interface effects in magnetic oxide thin films: A review. Journal of Magnetism and Magnetic Materials, 484, 110–126.
- Zhang, S., Liu, X., & Li, J. (2019). Magnetic anisotropy and dimensional effects in oxide thin films. Journal of Magnetism and Magnetic Materials, 484, 308–316.
- Zhou, Y., Zheng, R., & Li, Y. (2018). Texture development in epitaxial oxide thin films. Crystal Growth & Design, 18(11), 6523–6530.
- Zubko, P., Gariglio, S., Gabay, M., Ghosez, P., & Triscone, J. M. (2019). Interface physics in complex oxide heterostructures. Annual Review of Condensed Matter Physics, 2, 141–165.