Main Article Content

Authors

Bhrigu Singh Parihar

Dr. A. P. Singh

Dr. Vivek Kumar Yadav

Abstract

This research aims to provide insight into the potential advantages of Neem and Chirata over traditional antibiotics. This will be accomplished by comprehensive evaluations of safety profiles, investigations into therapy duration, and dose selection. An analysis of the effectiveness of several medicinal and botanical extracts, including Neem and Chirata, in the therapeutic management of Salmonella typhi infections. This study aims to meticulously examine the safety and effectiveness of various medications with a particular focus on their impact on S. typhi. Once performed, mechanistic research will provide light on the specific antimicrobial mechanisms that these medications employ. The abstract summarizes the study's objectives, which include comparing these interventions to standard treatments, looking into the synergistic effects of combination therapy, tracking the rise of antibiotic resistance, and assessing the overall outcomes of clinical trials. Lastly, the abstract gives a brief study of the goals of the clinical studies and their potential future contributions to infectious illness treatment. This is achieved by summarizing all the important and numerous facets of the clinical trials that is being considered.

Downloads

Download data is not yet available.

Article Details

Section

Articles

References

  1. Alikwe, P. C., Ohimain, E. I., Zige, D. V., & Angaye, T. N. (2013). Antibacterial activity of ethanol extract of the defatted seed and seed coat of Moringa oleifera. Journal of Pharmacy and Biological Sciences, 8, 38-41.
  2. Andersson, D. I., & Hughes, D. (2010). Antibiotic resistance and its cost: is it possible to reverse resistance? Nature Reviews Microbiology, 8(4), 260-271.
  3. Antunes, P., Mourão, J., Campos, J., & Peixe, L. (2016). Salmonellosis: the role of poultry meat. Clinical microbiology and infection, 22(2), 110-121.
  4. Arnison, P. G., Bibb, M. J., Bierbaum, G., Bowers, A. A., Bugni, T. S., Bulaj, G., & Van Der Donk, W. A. (2013). Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Natural product reports, 30(1), 108-160.
  5. Arora, D., Singh, R., Kaur, M., & Ahi, R. S. (2010). A changing pattern in antimicrobial susceptibility of Salmonella enterica serotype isolated in North India. Afr J Microbiol Res, 4(3), 197-203.
  6. Bowdish, D. M., Davidson, D. J., Scott, M. G., & Hancock, R. E. (2005). Immunomodulatory activities of small host defense peptides. Antimicrobial agents and chemotherapy, 49(5), 1727-1732.
  7. Bretón, I., Burgos, R., Cereda, E., Desport, J. C., Dziewas, R., Genton, L., & Bischoff, S. C. (2018). ESPEN guideline clinical nutrition in neurology. Clinical Nutrition, 37(1), 354-396.
  8. Cadmus, L., Patrick, M. B., Maciejewski, M. L., Topolski, T. A. R. I., Belza, B. A. S. I. A., & Patrick, D. L. (2010). Community-based aquatic exercise and quality of life in persons with osteoarthritis. Medicine and science in sports and exercise, 42(1), 8-15.
  9. Chanda, S., & Dave, R. (2009). In vitro models for antioxidant activity evaluation and some medicinal plants possessing antioxidant properties: An overview. African Journal of Microbiology Research, 3(13), 981-996.
  10. Chokshi, A., Sifri, Z., Cennimo, D., & Horng, H. (2019). Global contributors to antibiotic resistance. Journal of global infectious diseases, 11(1), 36.
  11. Chopra, I., & Roberts, M. (2001). Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiology and molecular biology reviews, 65(2), 232-260.
  12. Das, K., & Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in environmental science, 2, 53.
  13. Doublet, B., Lailler, R., Meunier, D., Brisabois, A., Boyd, D., Mulvey, M. R., & Cloeckaert, A. (2003). Variant Salmonella genomic island 1 antibiotic resistance gene cluster in Salmonella enterica serovar Albany. Emerging Infectious Diseases, 9(5), 585.
  14. Dubey, G. P., & Ben-Yehuda, S. (2011). Intercellular nanotubes mediate bacterial communication. Cell, 144(4), 590-600.
  15. Ejaz, M., Samy, M. M., Ye, Y., Kuo, S. W., & Gamal Mohamed, M. (2023). Design hybrid porous organic/inorganic polymers containing polyhedral oligomeric Silsesquioxane/Pyrene/Anthracene moieties as a high-performance electrode for supercapacitor. International Journal of Molecular Sciences, 24(3), 2501.
  16. Eloff, J. N. (2019). Avoiding pitfalls in determining antimicrobial activity of plant extracts and publishing the results. BMC complementary and alternative medicine, 19(1), 1-8.
  17. Ferrazzano, G. F., Roberto, L., Catania, M. R., Chiaviello, A., De Natale, A., Roscetto, E., & Palumbo, G. (2013). Screening and scoring of antimicrobial and biological activities of Italian vulnerary plants against major oral pathogenic bacteria. Evidence-Based Complementary and Alternative Medicine, 2013.
  18. Gianfaldoni, S., Tchernev, G., Wollina, U., Roccia, M. G., Fioranelli, M., Lotti, J., ... & Lotti, T. (2018). Micro-focused phototherapy associated to janus kinase inhibitor: a promising valid therapeutic option for patients with localized vitiligo. Open access Macedonian journal of medical sciences, 6(1), 46.
  19. Jayaprakasan, K., Pandian, D., Hopkisson, J., Campbell, B. K., & Maalouf, W. E. (2014). Effect of ethnicity on live birth rates after in vitro fertilisation or intracytoplasmic sperm injection treatment. BJOG: An International Journal of Obstetrics & Gynaecology, 121(3), 300-307.
  20. Kar, S., & Moura, J. M. (2013). Consensus+ innovations distributed inference over networks: cooperation and sensing in networked systems. IEEE Signal Processing Magazine, 30(3), 99-109.
  21. Kareru, P. G., Keriko, J. M., Kenji, G. M., Thiong’o, G. T., Gachanja, A. N., & Mukiira, H. N. (2010). Antimicrobial activities of skincare preparations from plant extracts. African Journal of Traditional, Complementary and Alternative Medicines, 7(3).
  22. Karmakar, M., & Ray, R. R. (2011). Current trends in research and application of microbial cellulases. Research Journal of Microbiology, 6(1), 41.
  23. Kazmi, W., Garcia-Ruiz, F., Nielsen, J., Rasmussen, J., & Andersen, H. J. (2015). Exploiting affine invariant regions and leaf edge shapes for weed detection. Computers and Electronics in Agriculture, 118, 290-299.
  24. Khan, M. A., & Salah, K. (2018). IoT security: Review, blockchain solutions, and open challenges. Future generation computer systems, 82, 395-411.
  25. Mehdi, Y., Létourneau-Montminy, M. P., Gaucher, M. L., Chorfi, Y., Suresh, G., Rouissi, T., & Godbout, S. (2018). Use of antibiotics in broiler production: Global impacts and alternatives. Animal nutrition, 4(2), 170-178.
  26. Muaz, K., Riaz, M., Akhtar, S., Park, S., & Ismail, A. (2018). Antibiotic residues in chicken meat: global prevalence, threats, and decontamination strategies: a review. Journal of food protection, 81(4), 619-627.
  27. Singh, S., & Prasad, S. M. (2014). Growth, photosynthesis and oxidative responses of Solanum melongena L. seedlings to cadmium stress: mechanism of toxicity amelioration by kinetin. Scientia Horticulturae, 176, 1-10.
  28. Tetali, P., Waghchaure, C., Daswani, P. G., Antia, N. H., & Birdi, T. J. (2009). Ethnobotanical survey of antidiarrhoeal plants of Parinche valley, Pune district, Maharashtra, India. Journal of ethnopharmacology, 123(2), 229-236.
  29. Vongtau, H. O., Abbah, J., Chindo, B. A., Mosugu, O., Salawu, A. O., Kwanashie, H. O., & Gamaniel, K. S. (2005). Central inhibitory effects of the methanol extract of neorautanenia mitis root in rats and mice. Pharmaceutical biology, 43(2), 113-120.
  30. Zengin, G., Aktumsek, A., Guler, G. O., Cakmak, Y. S., & Yildiztugay, E. (2011). Antioxidant Properties of Methanolic Extract and Fatty Acid Composition of Centaurea urvillei DC. subsp. hayekiana Wagenitz. Records of Natural Products, 5(2).