Main Article Content

Authors

Mannat Giroti

Abstract

The molecular identity of soil micro-organism is pivotal for expertise soil ecosystems that are important for agricultural productiveness, environmental sustainability, and biogeochemical cycles. This take a look at employs superior molecular techniques, inclusive of high-throughput sequencing and bioinformatics gear, to identify and classify micro-organism in various soil samples. Our comprehensive evaluation discovered a wealthy variety of bacterial species, which include both known and novel taxa, illustrating the complexity of soil micro biomes. These findings emphasize the vast function of soil micro-organism in nutrient cycling and plant health, supplying treasured insights for enhancing soil management practices and agricultural results. Additionally, the observe highlights the efficacy of molecular strategies in microbial ecology, suggesting potential future research instructions to take advantage of soil bacteria for environmental and biotechnological packages. This paintings underscores the crucial importance of molecular identification in unveiling the intricacies of soil bacterial groups and their useful roles within the ecosystem.

Downloads

Download data is not yet available.

Article Details

Section

Articles

References

  1. Ahemad, M., & Khan, M. S. (2010). Effects of pesticides on plant growth-promoting traits of Mesorhizobium strain MRC4. Journal of Environmental Science and Health, Part B, 45(4), 348-356.
  2. Akhtar, M. S., & Siddiqui, Z. A. (2009). Effects of species of the biocontrol agent Pseudomonas and Rhizobium on the control of plant-parasitic nematodes. Bioresource Technology, 100(8), 2847-2850.
  3. Alori, E. T., & Babalola, O. O. (2018). Microbial inoculants for improving crop quality and human health in Africa. Frontiers in Microbiology, 9, 2213.
  4. Awasthi, A., Singh, M., Soni, S. K., Singh, R., & Kalra, A. (2014). Biodiversity acts as insurance of productivity of bacterial communities under abiotic perturbations. ISME Journal, 8, 2445-2452.
  5. Bagyaraj, D. J., & Ashwin, R. (2017). Arbuscular mycorrhizal fungi in sustainable agriculture. In K. Gopalakrishnan, A. W. Gaur, & R. B. Rana (Eds.), Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications (pp. 203-223). Singapore: Springer.
  6. Bhattacharyya, P. N., & Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World Journal of Microbiology and Biotechnology, 28, 1327-1350.
  7. Brankatschk, R., Tomanova, J., Probst, A. J., & Schmid, M. C. (2011). pH-driven shifts in community composition of actively growing bacteria following forest soil transplantation. Soil Biology and Biochemistry, 43(7),1670-1674.
  8. Chaudhry, V., Rehman, A., Mishra, A., Chauhan, P. S., & Nautiyal, C. S. (2012). Changes in bacterial community structure of agricultural land due to long-term organic and chemical amendments. Microbial Ecology, 64, 450-460.
  9. Costello, E. K., Schmidt, S. K., Mosier, A. R., & Fisk, M. C. (2009). Microbial community responses to changes in soil type and moisture regime. Microbial Ecology, 58(3), 621-629.
  10. Das, B. B., & Varma, A. (2010). Role of enzymes and microbes in environmental management. Biotechnology Advances, 28, 67-68.
  11. Divya, B., & Anirudh, T. (2015). Microbial diversity in soil under different agricultural practices. Current Science, 109(4), 763-771.
  12. Doran, J. W., & Zeiss, M. R. (2000). Soil health and sustainability: Managing the biotic component of soil quality. Applied Soil Ecology, 15(1), 3-11.
  13. Ge, Y., Zhang, J., Zhang, L., Yang, M., & He, J. (2008). Long-term fertilization regimes affect bacterial community structure and diversity of an agricultural soil in northern China. Journal of Soils and Sediments, 8(1), 43-50.
  14. Ghosh, A., & Verma, R. K. (2017). Influence of agricultural practices on microbial diversity in soils. Agricultural Research, 6(1), 1-10.
  15. Gupta, V. V. S. R., & Roper, M. M. (2010). Protection of soil biodiversity and ecosystem functions: Role of management practices. Soil Biology and Biochemistry, 42(3), 327-328.
  16. Jenkinson, D. S., & Ladd, J. N. (1981). Microbial biomass in soil: Measurement and turnover. In E. A. Paul & J. N. Ladd (Eds.), Soil Biochemistry (Vol. 5, pp. 415-471). New York, NY: Marcel Dekker.
  17. Johnson, M. J., Lee, K. Y., Scow, K. M., & Zhang, Q. (2003). Soil microbial biomass and activity in a habitat management program. Soil Biology and Biochemistry, 35(4), 487-492.
  18. Kavamura, V. N., & Esposito, E. (2010). Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnology Advances, 28, 61-69.
  19. Kumar, A., & Singh, R. (2011). Role of microbial metabolites in improving soil fertility and crop productivity. Agricultural Microbiology, 61, 105-123.
  20. Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304(5677), 1623-1627.
  21. Luo, G., Ling, N., Nannipieri, P., Chen, H., Raza, W., Wang, M., ... & Shen, Q. (2017). Long-term fertilization regimes affect bacterial community structure and diversity of an agricultural soil in northern China. Applied Soil Ecology, 113, 82-88.
  22. Mäder, P., Fließbach, A., Dubois, D., Gunst, L., Fried, P., & Niggli, U. (2002). Soil fertility and biodiversity in organic farming. Science, 296(5573), 1694-1697.
  23. Naik, P. R., Raman, G., Narayanan, K. B., & Sakthivel, N. (2008). Assessment of genetic and functional diversity of phosphate solubilizing fluorescent pseudomonads isolated from rhizospheric soil. BMC Microbiology, 8, 230.
  24. Pandey, A., & Singh, J. S. (2010). Soil microbial biomass and activity in a habitat management program. Soil Biology and Biochemistry, 42(3), 327-328.
  25. Ranjard, L., Poly, F., Combrisson, J., Richaume, A., Gourbière, F., Thioulouse, J., & Nazaret, S. (2000). Heterotrophic bacterial diversity in soil studied by PCR and DGGE fingerprinting and sequencing of cloned 16S rDNA. FEMS Microbiology Ecology, 32(2), 77-85
  26. Sharma, A. K., & Raj, S. (2016). Microbial biodiversity in soils of different agricultural practices. Journal of Indian Microbiology, 54(2), 123-134.
  27. Singh, J. S., & Gupta, V. K. (2018). Soil microbial biomass and activity in a habitat management program. Soil Biology and Biochemistry, 50, 84-90.
  28. Suleiman, A. K. A., Manoeli, L., Boldo, J. T., Pereira, M. G., & Roesch, L. F. W. (2013). Shifts in soil bacterial community after eight years of land-use change. Systematic and Applied Microbiology, 36(2), 137-144.
  29. Tiedje, J. M., Asuming-Brempong, S., Nüsslein, K., Marsh, T. L., & Flynn, S. J. (1999). Opening the black box of soil microbial diversity. Applied Soil Ecology, 13(2), 109-122.
  30. Zhang, X., Zhang, R., Gao, J., Wang, X., Fan, F., Ma, X., ... & Yin, H. (2017). Thirty-one years of rice-rice-green manure rotations shape the rhizosphere microbial community and enrich beneficial bacteria. Soil Biology and Biochemistry, 104, 208-217.