Mechanisms and Implications of Electron Pitch Angle Scattering by Whistler Mode Waves in Earth's Magnetosphere: A Comprehensive Review
Main Article Content
Authors
Abstract
Electron pitch angle scattering by whistler-mode waves is one of the key processes in the magnetospheric dynamics affecting the radiation belt populations and leading to the energetic electron precipitation. This review gives a detailed description of the processes that govern pitch angle scattering, linear and nonlinear interactions between waves and particles, with the emphasis on oblique whistler mode waves. Remote sensing data from satellites and other sources, as well as from in-situ measurements, and analysis from modeling and simulation show that these interactions are not straightforward. The consequences of scattering, including the loss of radiation belts, aurorae, and space weather effects, are described. There is a call for improved modeling and better observational methods to solve existing problems. The goal of this review is to provide an up-to-date review of the literature and to outline the directions for future research in this important field of space physics.
Downloads
Article Details
Section
References
- Agapitov, O., Golkowski, M., Khatun-E-Zannat, R., Hosseini, P., & Harid, V. (2023). Complex Whistler-Mode Wave Features Created by a High Density Plasma Duct in the Magnetosphere.
- Albert, J. M. (2000). Gyroresonant interactions of radiation belt particles with a monochromatic electromagnetic wave. Journal of Geophysical Research: Space Physics, 105(A9), 21191-21209.
- Albert, J. M. (2001). Comparison of pitch angle diffusion by turbulent and monochromatic whistler waves. Journal of Geophysical Research: Space Physics, 106(A5), 8477–8482. https://doi.org/10.1029/2000JA000304
- Albert, J. M. (2002). Nonlinear interaction of outer zone electrons with VLF waves. Geophysical Research Letters, 29(8), 1275. https://doi.org/10.1029/2001GL013941
- Albert, J. M. (2003). Evaluation of quasi-linear diffusion coefficients for EMIC waves in a multispecies plasma. Journal of Geophysical Research: Space Physics, 108(A6), 1249. https://doi.org/10.1029/2002JA009792
- Albert, J. M. (2008). Efficient approximations of quasi-linear diffusion coefficients in the radiation belts. J. Geophys. Res. Space Phys. 113, A06208. doi:10.1029/2007JA012936
- Albert, J. M., (2022). Analytical results for phase bunching in the pendulum model of wave-particle interactions. Front. Astron. Space Sci. 9, 971358. doi:10.3389/fspas.2022.971358
- Albert, J. M., Artemyev, A. V., (2021). Models of resonant wave-particle interactions. J. Geophys. Res. Space Phys. 126, e29216. doi:10.1029/2021JA029216
- Albert, J. M., Tao, X., & Bortnik, J. (2012). Aspects of nonlinear wave-particle interactions. Geophysical Monograph Series, 199, 255–264. https://doi.org/10.1029/2012GM001317
- Allanson, O., Elsden, T., (2022). Weak turbulence and quasilinear diffusion for relativistic wave-particle interactions via a Markov approach. Front. Astron. Space Sci. 8, 232. doi:10.3389/fspas.2021.805699
- Allen, R. C., Zhang, J. C., (2015). A statistical study of EMIC waves observed by cluster: 1. Wave properties. J. Geophys. Res. Space Phys. 120, 5574–5592. doi:10.1002/2015JA021333
- An, X., Artemyev, A., (2022). Nonresonant scattering of relativistic electrons by electromagnetic ion cyclotron waves in Earth’s radiation belts. Phys. Rev. Lett. 129, 135101. doi:10.1103/PhysRevLett.129.135101
- Anderson, B. J., (2018). Trapping (capture) into resonance and scattering on resonance: Summary of results for space plasma systems. Commun. Nonlinear Sci. Numer. Simulat. 65, 111–160. doi:10.1016/j.cnsns.2018.05.004
- Angelopoulos, V. (2010). The ARTEMIS mission. Space Science Reviews, 165, 3–25. 10.1007/s11214-010-9687-2
- Auster, H. U. , Glassmeier, K. H. , Magnes, W. , Aydogar, O. , Baumjohann, W. , Constantinescu, D. , et al. (2008). The THEMIS fluxgate magnetometer. Space Science Reviews, 141, 235–264. 10.1007/s11214-008-9365-9