Main Article Content

Authors

Chelimella Kishan

Dr. Arvind Kumar

Abstract

Electron pitch angle scattering by whistler-mode waves is one of the key processes in the magnetospheric dynamics affecting the radiation belt populations and leading to the energetic electron precipitation. This review gives a detailed description of the processes that govern pitch angle scattering, linear and nonlinear interactions between waves and particles, with the emphasis on oblique whistler mode waves. Remote sensing data from satellites and other sources, as well as from in-situ measurements, and analysis from modeling and simulation show that these interactions are not straightforward. The consequences of scattering, including the loss of radiation belts, aurorae, and space weather effects, are described. There is a call for improved modeling and better observational methods to solve existing problems. The goal of this review is to provide an up-to-date review of the literature and to outline the directions for future research in this important field of space physics.

Downloads

Download data is not yet available.

Article Details

Section

Articles

References

  1. Agapitov, O., Golkowski, M., Khatun-E-Zannat, R., Hosseini, P., & Harid, V. (2023). Complex Whistler-Mode Wave Features Created by a High Density Plasma Duct in the Magnetosphere.
  2. Albert, J. M. (2000). Gyroresonant interactions of radiation belt particles with a monochromatic electromagnetic wave. Journal of Geophysical Research: Space Physics, 105(A9), 21191-21209.
  3. Albert, J. M. (2001). Comparison of pitch angle diffusion by turbulent and monochromatic whistler waves. Journal of Geophysical Research: Space Physics, 106(A5), 8477–8482. https://doi.org/10.1029/2000JA000304
  4. Albert, J. M. (2002). Nonlinear interaction of outer zone electrons with VLF waves. Geophysical Research Letters, 29(8), 1275. https://doi.org/10.1029/2001GL013941
  5. Albert, J. M. (2003). Evaluation of quasi-linear diffusion coefficients for EMIC waves in a multispecies plasma. Journal of Geophysical Research: Space Physics, 108(A6), 1249. https://doi.org/10.1029/2002JA009792
  6. Albert, J. M. (2008). Efficient approximations of quasi-linear diffusion coefficients in the radiation belts. J. Geophys. Res. Space Phys. 113, A06208. doi:10.1029/2007JA012936
  7. Albert, J. M., (2022). Analytical results for phase bunching in the pendulum model of wave-particle interactions. Front. Astron. Space Sci. 9, 971358. doi:10.3389/fspas.2022.971358
  8. Albert, J. M., Artemyev, A. V., (2021). Models of resonant wave-particle interactions. J. Geophys. Res. Space Phys. 126, e29216. doi:10.1029/2021JA029216
  9. Albert, J. M., Tao, X., & Bortnik, J. (2012). Aspects of nonlinear wave-particle interactions. Geophysical Monograph Series, 199, 255–264. https://doi.org/10.1029/2012GM001317
  10. Allanson, O., Elsden, T., (2022). Weak turbulence and quasilinear diffusion for relativistic wave-particle interactions via a Markov approach. Front. Astron. Space Sci. 8, 232. doi:10.3389/fspas.2021.805699
  11. Allen, R. C., Zhang, J. C., (2015). A statistical study of EMIC waves observed by cluster: 1. Wave properties. J. Geophys. Res. Space Phys. 120, 5574–5592. doi:10.1002/2015JA021333
  12. An, X., Artemyev, A., (2022). Nonresonant scattering of relativistic electrons by electromagnetic ion cyclotron waves in Earth’s radiation belts. Phys. Rev. Lett. 129, 135101. doi:10.1103/PhysRevLett.129.135101
  13. Anderson, B. J., (2018). Trapping (capture) into resonance and scattering on resonance: Summary of results for space plasma systems. Commun. Nonlinear Sci. Numer. Simulat. 65, 111–160. doi:10.1016/j.cnsns.2018.05.004
  14. Angelopoulos, V. (2010). The ARTEMIS mission. Space Science Reviews, 165, 3–25. 10.1007/s11214-010-9687-2
  15. Auster, H. U. , Glassmeier, K. H. , Magnes, W. , Aydogar, O. , Baumjohann, W. , Constantinescu, D. , et al. (2008). The THEMIS fluxgate magnetometer. Space Science Reviews, 141, 235–264. 10.1007/s11214-008-9365-9