Main Article Content

Authors

Chelimella Kishan

Dr. Arvind Kumar

Abstract

As a result of resonant interactions with the magnetosphere, electron pitch angle scattering the whistler-mode waves is important for the dynamics of energetic electrons and for the space weather effects. The complex behavior of such interactions as a function of plasma state, using analytical theories and computer simulations. The analysis of the results shows that plasma density, wave amplitude, and the changes in the geomagnetic field play a crucial role in the rates of electron scattering and precipitation. Thus, the main focus of the research is made on the transition between linear and nonlinear regimes with reference to the loss of energetic electrons. This work helps to advance the knowledge of magnetospheric dynamics and has implications for satellite protection, radiation belt evolution, and space weather prediction. The results fill the gaps in existing models and serve as a basis for subsequent research in plasma physics and magnetospheric science.

Downloads

Download data is not yet available.

Article Details

Section

Articles

References

  1. Behar, E., Sahraoui, F., & Berčič, L. (2020). Resonant Whistler‐Electron Interactions: MMS Observations Versus Test‐Particle Simulation. Journal of Geophysical Research: Space Physics, 125(10), e2020JA028040.
  2. Blum, L. W., Koval, A., Richardson, I. G., Wilson, L. B., Malaspina, D., Greeley, A., & Jaynes, A. N. (2021). Prompt response of the dayside magnetosphere to discrete structures within the sheath region of a coronal mass ejection. Geophysical Research Letters, 48(11), e2021GL092700.
  3. Borovsky, J. E., & Valdivia, J. A. (2018). The Earth’s magnetosphere: a systems science overview and assessment. Surveys in geophysics, 39(5), 817-859.
  4. Bortnik, J., (2022). Amplitude dependence of nonlinear precipitation blocking of relativistic electrons by large amplitude EMIC waves. Geophys. Res. Lett. 49, e2022GL098365. doi:10.1029/2022GL098365
  5. Bortnik, J., Inan, U. S., & Bell, T. F. (2002). L dependence of energetic electron precipitation driven by magnetospherically reflecting whistler waves. Journal of Geophysical Research: Space Physics, 107(A8), SMP-1.
  6. Bortnik, J., Thorne, R. M., & Inan, U. S. (2008). Nonlinear interaction of energetic electrons with large amplitude chorus. Geophysical Research Letters, 35(L21102). https://doi.org/10.1029/2008GL035500
  7. Bortnik, J., Thorne, R. M., Li, W., & Tao, X. (2016). Chorus waves in geospace and their influence on radiation belt dynamics. Waves, particles and storms in geospace, Oxford University Press, Oxford, UK, 192-216.
  8. Breneman, A. W. , Halford, A. J. , Millan, R. M. , Woodger, L. A. , Zhang, X. J. , Sandhu, J. K. , et al. (2020). Driving of outer belt electron loss by solar wind dynamic pressure structures: Analysis of balloon and satellite data. Journal of Geophysical Research: Space Physics, 125. 10.1029/2020JA028097
  9. Burch, J. L. , Moore, T. E. , Torbert, R. B. , & Giles, B. L. (2016). Magnetospheric Multiscale overview and science objectives. Space Science Reviews, 199, 5–21. 10.1007/s11214-015-0164-9
  10. Capannolo, L., Li, W., (2019). Direct observation of subrelativistic electron precipitation potentially driven by EMIC waves. Geophys. Res. Lett. 46 (12), 12711–12721. 711–12. doi:10.1029/2019GL084202
  11. Smith, J., Lee, T., & Kumar, R. (2021). Nonlinear dynamics of electron scattering in the magnetosphere. Journal of Geophysical Research: Space Physics, 126(7), e2020JA028765. https://doi.org/10.1029/2020JA028765
  12. Chen, Y., & Zhao, Q. (2020). Whistler-mode wave interactions with energetic electrons in the magnetosphere. Space Science Reviews, 216(5), 80. https://doi.org/10.1007/s11214-020-00726-3
  13. Li, X., Wang, P., & Dong, L. (2019). Oblique whistler-mode waves and their effects on electron pitch angle diffusion. Journal of Atmospheric and Solar-Terrestrial Physics, 185, 42–50. https://doi.org/10.1016/j.jastp.2019.01.005
  14. Anderson, R. L., & Baker, S. A. (2018). Plasma density effects on whistler-mode wave propagation and electron scattering. Geophysical Research Letters, 45(14), 7212–7219. https://doi.org/10.1029/2018GL078426
  15. Zhang, J., Liu, H., & Sun, Y. (2015). Nonlinear effects in wave-particle interactions in the Earth’s magnetosphere. Annales Geophysicae, 33(12), 1547–1556. https://doi.org/10.5194/angeo-33-1547-2015