Main Article Content

Authors

Neha Yadav

Dr. Ram Nihor

Abstract

Molecular Beam Epitaxy (MBE) is a sophisticated method for producing superior nanostructures with regulated form and composition. With an emphasis on their crystallographic characteristics, surface morphology, and electronic behaviour, this work provides the structural clarification and electrical characterisation of MBE-grown nanostructures. The distribution of defects, lattice strain, and structural integrity of the nanostructures are revealed by transmission electron microscopy (TEM) and high-resolution X-ray diffraction (HRXRD). Surface topology and roughness are revealed using atomic force microscopy (AFM). Electrical characterisation shows how growth factors affect conductivity, charge trapping, and carrier transport by current-voltage (I-V) and capacitance-voltage (C-V) measurements. Optimised growing conditions improve electrical performance, decrease flaws, and increase crystallinity, according to the results. In order to support their possible uses in nanoelectronics, optoelectronics, and quantum devices, the work offers a thorough knowledge of the structure-property connection in MBE-grown nanostructures.

Downloads

Download data is not yet available.

Article Details

Section

Articles

References

  1. Ajdari, M., & Tegeder, P. (2020). Electronic properties of 6,13-diazapentacene adsorbed on Au(111): A quantitative determination of transport, singlet and triplet states, and electronic spectra. Journal of Physical Chemistry C, 124, 13196–13205.
  2. Breuer, T., & Witte, G. (2013). Thermally activated intermixture in pentacene-perfluoropentacene heterostructures. Journal of Chemical Physics, 138, 114901.
  3. Andrews, P. T. & Inglesfeld, J. E. (1992). Inverse photoemission and how it is used. Unoccupied Electron States, 69, 243–276
  4. Fan, C., Zoombelt, A. P. & Bao, Z. (2013). Solution-grown organic single-crystalline p–n junctions with ambipolar charge transport. Advanced Materials, 25(39), 5762–5766.
  5. Forrest, S. R. (1997). Ultrathin organic films grown by organic molecular beam deposition and related techniques. Chemical Reviews, 97(6), 1793–1896.
  6. Chan, W.-L., Ligges, M. & Zhu, X.-Y. (2011). Observing the multiexciton state in singlet fission and ensuing ultrafast multielectron transfer. Science, 334(6053), 1541–1545.
  7. Breuer, T., Karthäuser, A., & Witte, G. (2016). Effects of molecular orientation in acceptor-donor interfaces between pentacene and C₆₀ and Diels-Alder adduct formation at the molecular interface. Advanced Materials Interfaces, 3, 1500452.
  8. Dorset, D. L., & McCourt, M. P. (1994). Disorder and the molecular packing of C60 buckminsterfullerene: A direct electron-crystallographic analysis. Acta Crystallographica Section A: Foundations of Crystallography, 50(3), 344–351.
  9. Engmann, S., & Gundlach, D. J. (2019). Higher order effects in organic LEDs with sub-bandgap turn-on. Nature Communications, 10, 227.
  10. Armstrong, N. R., & Brumbach, M. (2009). Organic/organic’ heterojunctions: Organic light emitting diodes and organic photovoltaic devices. Macromolecular Rapid Communications, 30(9–10), 717–731.
  11. Campione, M., Sassella, A., & Raos, G. (2006). Organic−organic epitaxy of incommensurate systems: Quaterthiophene on potassium hydrogen phthalate single crystals. Journal of the American Chemical Society, 128(41), 13378–13387.
  12. Gunjo, Y., Kamebuchi, H. (2021). Interface structures and electronic states of epitaxial tetraazanaphthacene on single-crystal pentacene. Materials, 14, 1088.
  13. Han, C., Xiang, D., Zheng, M. R., et al. (2015). Tuning the electronic properties of ZnO nanowire field effect transistors via surface functionalization. Nanotechnology, 26, 095202.
  14. Hatch, R. C., Huber, D. L., & Höchst, H. (2009). HOMO band structure and anisotropic effective hole mass in thin crystalline pentacene films. Physical Review B, 80(8), 081411.
  15. Hayakawa, R., Honma & Wakayama, Y. (2022). Electrically reconfigurable organic logic gates: A promising perspective on a dual-gate antiambipolar transistor. Advanced Materials, 34(1), 2109491.