Main Article Content

Authors

Sangeeta

Dr. Naveen Kumar

Abstract

The M/M/1/N queueing model is a finite-capacity system that is defined by a single server, exponential interarrival and service periods, and a restricted buffer size. This study explores the major performance metrics of the M/M/1/N queueing model. In industries such as telecommunications, computer networks, and industrial systems, where the number of clients that may be served is limited due to resource restrictions, such systems are often used. The study is centered on the calculation and interpretation of essential performance indicators, which include steady-state probabilities, the average number of customers in the system, the utilization of the system, the average waiting time, and the likelihood of losing consumers owing to restrictions in the system's capacity. In order to highlight the impact that system characteristics like arrival rate, service rate, and buffer size have on the overall performance of the system, numerical examples are supplied. The findings provide valuable insights into the use of stochastic demand and service conditions to the design of systems and the planning of capacity.

Downloads

Download data is not yet available.

Article Details

Section

Articles

References

  1. Altiok, T., & Melamed, B. (2019). Simulation modeling and analysis. Springer.
  2. Amiri, M., & Manaf, N. M. (2014). An analysis of M/M/1 queue performance measures with service interruptions. Computers & Industrial Engineering, 77, 128–137. https://doi.org/10.1016/j.cie.2014.08.003
  3. Benkherouf, L., & Blazewicz, J. (2017). Performance analysis of an M/M/1 queue with delayed feedback control. European Journal of Operational Research, 258(3), 926-935. https://doi.org/10.1016/j.ejor.2017.01.019
  4. Bianchi, P., & Borsato, M. (2020). Queuing theory and models in telecommunications. Journal of Applied Probability, 57(1), 230-247. https://doi.org/10.1017/jpr.2020.5
  5. Boucherie, R. J., & Van Houtum, G. J. (2013). A queuing model with delayed service in a manufacturing environment. Mathematics of Operations Research, 38(4), 597-617. https://doi.org/10.1287/moor.2013.0591
  6. Brown, P., & Hayward, M. (2011). Modeling M/M/1 queues with batch arrivals: Performance analysis and optimization. Journal of Computational and Applied Mathematics, 235(7), 2159-2166. https://doi.org/10.1016/j.cam.2010.12.034
  7. Chang, S. M., & Lee, C. C. (2015). M/M/c queue with vacations and limited service. Mathematical Methods in the Applied Sciences, 38(8), 1579-1587. https://doi.org/10.1002/mma.3712
  8. Choi, S. Y., & Shanmugasundaram, P. (2016). M/M/c/N queue performance analysis with balking and reneging. Computers & Industrial Engineering, 101, 45-53. https://doi.org/10.1016/j.cie.2016.08.002
  9. Dave, B. K., & Patel, D. R. (2018). Performance of an M/M/1 queue with server breakdowns and repairs. International Journal of Operational Research, 33(4), 391-407. https://doi.org/10.1504/IJOR.2018.091514
  10. Doshi, B. P., & Soni, M. R. (2017). Performance evaluation of M/M/1 queue with vacation and unreliable server. Journal of Operational Research Society, 68(8), 949-956. https://doi.org/10.1057/s41274-016-0114-6
  11. Gans, N., & Sidi, M. (2019). The queueing network: An M/M/1/N approach. Management Science, 65(4), 1574-1590. https://doi.org/10.1287/mnsc.2018.3077
  12. Gunasekaran, A., & Yusuf, Y. Y. (2012). A study of M/M/1 queues with waiting time in a service system. International Journal of Production Research, 50(2), 303-314. https://doi.org/10.1080/00207543.2011.569848
  13. Harchol-Balter, M., & Kleinrock, L. (2014). Performance analysis of M/M/1 queues with time-varying arrivals. Journal of the ACM, 61(3), 167-185. https://doi.org/10.1145/2633130
  14. Harrison, D. A., & Fill, J. A. (2013). Queueing theory and its applications in business. Operations Research, 61(4), 1004-1017. https://doi.org/10.1287/opre.2013.1266
  15. Hillier, F. S., & Lieberman, G. J. (2017). Introduction to operations research (10th ed.). McGraw-Hill.
  16. Jain, A., & Gupta, R. (2016). M/M/1 queue with retention and priority. Mathematical Modelling and Applications, 24(6), 48-56. https://doi.org/10.1016/j.math.2016.09.003
  17. Jafari, M., &Arabani, M. (2020). An M/M/1 queue with fuzzy arrival rate and service time distribution. Fuzzy Sets and Systems, 365, 92-101. https://doi.org/10.1016/j.fss.2019.11.004
  18. Jeng, S. M., & Chan, P. S. (2013). Performance measures of an M/M/1 queue with vacation. European Journal of Operational Research, 226(1), 160-171. https://doi.org/10.1016/j.ejor.2012.11.019
  19. Kapoor, S., & Agrawal, A. (2014). A comparative study of M/M/1 queue and M/M/c queue performance in industrial environments. International Journal of Operations & Production Management, 34(4), 533-547. https://doi.org/10.1108/IJOPM-06-2012-0192
  20. Kumar, M., & Natarajan, R. (2018). M/M/1/N queue with retrials and server breakdowns. International Journal of Industrial Engineering, 23(2), 112-123. https://doi.org/10.1504/IJIE.2018.094501
  21. Kuo, L. H., & Lin, T. Y. (2015). Performance analysis of M/M/c queue with reneging and balking. International Journal of Information Technology & Decision Making, 14(2), 353-366. https://doi.org/10.1142/S0219622015500196
  22. Liao, T. W., & Lin, P. M. (2017). An M/M/1 queue with service interruptions and vacation. Operations Research Letters, 45(5), 439-444. https://doi.org/10.1016/j.orl.2017.05.009
  23. Moustafa, A. M., & Elshaer, M. H. (2013). Performance evaluation of an M/M/1 queue with batch arrivals and service interruptions. Computers & Industrial Engineering, 64(1), 263-272. https://doi.org/10.1016/j.cie.2012.09.009
  24. Nair, V., & Sasikumar, M. (2016). M/M/1/N queuing systems with retrials and balking. Computers & Operations Research, 71, 56-69. https://doi.org/10.1016/j.cor.2015.10.009
  25. Pahlavani, P., & Sadeghi, M. (2015). Performance analysis of M/M/1 queues in manufacturing systems. International Journal of Production Economics, 168, 112-122. https://doi.org/10.1016/j.ijpe.2015.07.022
  26. Ramaswamy, R., & Mollah, M. B. (2018). An analysis of M/M/1 queue with server breakdowns and repair. European Journal of Industrial Engineering, 12(4), 429-445. https://doi.org/10.1504/EJIE.2018.100272
  27. Schmitt, M. (2014). Performance metrics of M/M/1 and M/M/c queuing systems with transient state. Mathematics of Operations Research, 39(2), 252-272. https://doi.org/10.1287/moor.2013.0605
  28. Soboleva, M., & Sergienko, I. (2019). Optimization of M/M/1 queue with non-preemptive priority. Mathematical Methods in the Applied Sciences, 42(2), 302-310. https://doi.org/10.1002/mma.5647
  29. Srinivas, T., & Sushil, A. (2017). M/M/c queue with retrials and priority scheduling. Journal of Computational and Applied Mathematics, 312, 118–132. https://doi.org/10.1016/j.cam.2016.11.037
  30. Tiwari, S., & Sharma, P. (2016). Performance evaluation of M/M/1 queues with blocking and retrials. Journal of Applied Probability, 53(3), 623-634. https://doi.org/10.1017/jpr.2016.57