A Comparative Study of Classical and Deep Learning Approaches for Colorectal Cancer using Histopathology Images
Main Article Content
Authors
Abstract
This survey paper covers the in-depth analysis of the application of the classical machine learning models and modern deep learning models for colorectal cancer (CRC) analysis using histopathology images. In last decade, researchers have increasingly used computational methods in pathology and applying variety of algorithms to improve diagnostic accuracy and prognostic evaluation. Classical methods involved the use of feature extraction and traditional classifiers like support vector machines (SVM) and random forests (RF). While, deep learning approaches, and in particular convolutional neural networks (CNNs), have achieved better performance by learning hierarchical representations directly from image data. By synthesizing evidence from 25 authentic studies, this paper critically compares these two paradigms, elucidating their methodological differences, performance metrics, and clinical applicability in the field of histopathology analysis of colorectal cancer. We describe preprocessing approaches such as stain normalization and augmentation as well as challenges such as small annotated datasets and variability in tissue preparation. It further talks about the Hybrid models, which may include both classical and deep learning features to improve beyond accuracy. Finally, we discuss emerging trends, future directions, and limitations. As noted, in the analysis, deep learning demonstrates a considerable potential but classical approaches still provide a competitive edge in environments with limited availability of data or when interpretability of model decisions are required. In conclusion, this work presents a comprehensive survey to help the research community as well as clinicians choose the right approaches for colorectal cancer detection and prognosis analysis from histopathology images.
Downloads
Article Details
Section
References
- Romero-Zoghbi, S. E., Krumina, E., López-Campos, F., & Couñago, F. (2025). Current and future perspectives in the management and treatment of colorectal cancer. World Journal of Clinical Oncology, 16(2), 100807.
- Rizzo, V. (2025). Development of a radiomic model using machine learning for breast lesion classification and breast cancer subtyping.
- Chhillar I, Singh A. A feature engineering-based machine learning technique to detect and classify lung and colon cancer from histopathological images. Med Biol Eng Comput. 2024 Mar;62(3):913-924. doi: 10.1007/s11517-023-02984-y. Epub 2023 Dec 13. PMID: 38091162.
- Kather, J. N., Pearson, A. T., Halama, N., Jäger, D., Krause, J., Bent, A., ... & Marx, A. (2019). Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nature Medicine, 25(7), 1054–1056. https://doi.org/10.1038/s41591-019-0462-2
- Coudray, N., Ocampo, P. S., Sakellaropoulos, T., Narula, N., Snuderl, M., Fenyö, D., ... & Tsirigos, A. (2018). Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nature Medicine, 24(10), 1559–1567. https://doi.org/10.1038/s41591-018-0047-2
- Janowczyk, A., & Madabhushi, A. (2016). Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases. Journal of Pathology Informatics, 7, 29. https://doi.org/10.4103/2153-3539.186785
- Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., ... & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88. https://doi.org/10.1016/j.media.2017.07.005
- Xu, Y., Zhu, W., Xiang, X., & Li, Y. (2015). Breast cancer histopathological image classification using deep neural networks. In 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (pp. 1342–1345). https://doi.org/10.1109/BIBM.2015.7359877
- Wang, D., Khosla, A., Gargeya, R., Irshad, H., & Beck, A. H. (2016). Deep learning in histopathology: How far are we? Journal of Pathology Informatics, 7, 53. https://doi.org/10.4103/2153-3539.186786
- Cruz-Roa, A., Gilmore, H., Basavanhally, A., Feldman, M., Ganesan, S., Shih, N. N., ... & Madabhushi, A. (2014). Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks. In Medical Imaging 2014: Digital Pathology (Vol. 9041, p. 904103). https://doi.org/10.1117/12.2043925
- Sirinukunwattana, K., Raza, S. E. A., Tsang, Y. W., Snead, D. R. J., Cree, I. A., & Rajpoot, N. M. (2016). Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Transactions on Medical Imaging, 35(5), 1196–1206. https://doi.org/10.1109/TMI.2015.2506504
- Shen, W., Zhou, M., Yang, F., Yang, C., & Tian, J. (2015). Multi-scale convolutional neural networks for lung nodule classification. In Information Processing in Medical Imaging: 24th International Conference, IPMI 2015, Sabhal Mor Ostaig, Isle of Skye, UK, June 28-July 3, 2015, Proceedings 24 (pp. 588-599). Springer International Publishing.
- Ehteshami Bejnordi, B., Veta, M., van Diest, P. J., van Ginneken, B., Karssemeijer, N., Litjens, G., ... & Pluim, J. P. W. (2017). Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA, 318(22), 2199–2210. https://doi.org/10.1001/jama.2017.14585
- Wang, X., Chen, H., Gan, C., Lin, H., Dou, Q., Tsougenis, E., ... & Heng, P. A. (2019). Weakly supervised deep learning for whole slide lung cancer image analysis. IEEE transactions on cybernetics, 50(9), 3950-3962.
- Huang, S., Arpaci, I., Al-Emran, M., Kılıçarslan, S., & Al-Sharafi, M. A. (2023). A comparative analysis of classical machine learning and deep learning techniques for predicting lung cancer survivability. Multimedia Tools and Applications, 82(22), 34183-34198.
- Banerji, S., & Mitra, S. (2022). Deep learning in histopathology: A review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 12(1), e1439.
- Komura, D., & Ishikawa, S. (2018). Machine learning methods for histopathological image analysis. Computational and Structural Biotechnology Journal, 16, 34–42. https://doi.org/10.1016/j.csbj.2017.12.001
- Dey, P., Chakraborty, C., Bhattacharya, S., & Chatterjee, S. (2020). Deep learning based automatic detection and segmentation of colorectal cancer in histopathology images. Scientific Reports, 10, 1473. https://doi.org/10.1038/s41598-020-58402-2
- Tellez, D., Litjens, G., Bándi, P., Bulten, W., Bokhorst, J. M., Ciompi, F., ... & van der Laak, J. (2019). Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology. Journal of Pathology Informatics, 10, 9. https://doi.org/10.4103/jpi.jpi_40_18
- Kather, J. N., Pearson, A. T., Halama, N., Jäger, D., Krause, J., Bent, A., ... & Marx, A. (2018). Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study. PLOS Medicine, 15(1), e1002715. https://doi.org/10.1371/journal.pmed.1002715
- Jimenez-del-Toro, O., Otálora, S., Andersson, M., Eurén, K., Hedlund, M., Rousson, M., ... & Atzori, M. (2017). Analysis of histopathology images: From traditional machine learning to deep learning. In Biomedical texture analysis (pp. 281-314). Academic Press.
- Bera, K., Schalper, K. A., Rimm, D. L., Velcheti, V., & Madabhushi, A. (2019). Artificial intelligence in digital pathology — new tools for diagnosis and precision oncology. Nature Reviews Clinical Oncology, 16, 703–715. https://doi.org/10.1038/s41571-019-0261-2
- Hamida, A. B., Devanne, M., Weber, J., Truntzer, C., Derangère, V., Ghiringhelli, F., ... & Wemmert, C. (2021). Deep learning for colon cancer histopathological images analysis. Computers in Biology and Medicine, 136, 104730.
- Khazaee Fadafen, M., & Rezaee, K. (2023). Ensemble-based multi-tissue classification approach of colorectal cancer histology images using a novel hybrid deep learning framework. Scientific Reports, 13(1), 8823.
- Madabhushi, A., & Lee, G. (2016). Image analysis and machine learning in digital pathology: Challenges and opportunities. Medical image analysis, 33, 170-175.
- Malik, J., Kiranyaz, S., Kunhoth, S., Ince, T., Al-Maadeed, S., Hamila, R., & Gabbouj, M. (2019). Colorectal cancer diagnosis from histology images: A comparative study. arXiv preprint arXiv:1903.11210.