Silicon Dioxide Nanoparticles as Osmoprotectants: A Review of their Role in Mitigating Osmotic Stress in Banana and Citrus Crops
Main Article Content
Authors
Abstract
Silicon dioxide nanoparticles (SiO₂-NPs) have emerged as promising abiotic stress alleviators in horticultural crops, yet their specific applications in banana (Musa spp.) and citrus (Citrus spp.) under osmotic stress remain underexplored. Osmotic stress, primarily induced by salinity and drought, disrupts water uptake, nutrient balance, and metabolic homeostasis, leading to reduced growth, yield, and fruit quality. This review synthesizes current knowledge on the physicochemical properties of SiO₂-NPs, their modes of action as osmoprotectants, and the mechanisms by which they enhance plant tolerance to osmotic challenges. We examine seed priming and foliar application strategies, highlighting how SiO₂-NPs modulate antioxidant defense systems, osmolyte accumulation (e.g., proline, soluble sugars), and membrane stability in banana and citrus. Comparative analyses of nanoparticle size, concentration, and surface modifications reveal optimal treatment parameters that maximize stress mitigation while minimizing phytotoxicity. Furthermore, the review addresses uptake pathways, translocation dynamics, and potential interactions with endogenous silicon transporters. Emerging omics-based insights into gene expression and metabolomic shifts provide a deeper understanding of SiO₂-NP–mediated stress resilience. Finally, we discuss environmental safety considerations, regulatory challenges, and future research directions, including field-scale trials and integration with precision agriculture. By consolidating recent advances and identifying critical knowledge gaps, this review offers a practical framework for the development of SiO₂-NP–based interventions to sustain banana and citrus production under increasingly prevalent osmotic stress conditions.
Downloads
Article Details
Section
References
- Ahmad, N., Sharma, S., Alam, M. K., Singh, V., Shamsi, S., Mehta, B., & Fatma, A. (2010). Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids and Surfaces B: Biointerfaces, 81(1), 81–86.
- Al Murad, M., Khan, A. L., & Muneer, S. (2020). Silicon in horticultural crops: Cross-talk, signaling, and tolerance mechanism under salinity stress. Plants, 9(4), 460.
- Avestan, S., Ghasemnezhad, M., Esfahani, M., & Byrt, C. S. (2019). Application of nano-silicon dioxide improves salt stress tolerance in strawberry plants. Agronomy, 9(5), 246.
- Baek, D., Kim, M. C., Kumar, D., Park, B., Cheong, M. S., Choi, W., ... & Lee, S. Y. (2019). AtPR5K2, a PR5-like receptor kinase, modulates plant responses to drought stress by phosphorylating protein phosphatase 2Cs. Frontiers in Plant Science, 10, 1146.
- Charrier, A., Vergne, E., Dousset, N., Richer, A., Petiteau, A., & Chevreau, E. (2019). Efficient targeted mutagenesis in apple and first time edition of pear using the CRISPR-Cas9 system. Frontiers in Plant Science, 10, 40.
- Farhangi-Abriz, S., & Torabian, S. (2018). Nano-silicon alters antioxidant activities of soybean seedlings under salt toxicity. Protoplasma, 255(3), 953–962.
- Fister, A. S., Landherr, L., Maximova, S. N., & Guiltinan, M. J. (2018). Transient expression of CRISPR/Cas9 machinery targeting TcNPR3 enhances defense response in Theobroma cacao. Frontiers in Plant Science, 9, 268.
- Gururani, M. A., Upadhyaya, C. P., Baskar, V., Venkatesh, J., Nookaraju, A., & Park, S. W. (2013). Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum. Journal of Plant Growth Regulation, 32(2), 245–258.
- Hasan, N., Kamruzzaman, M., Islam, S., Hoque, H., & Bhuiyan, F. H. (2019). Development of partial abiotic stress tolerant Citrus reticulata Blanco and Citrus sinensis (L.) Osbeck through Agrobacterium-mediated transformation. Journal of Genetic Engineering and Biotechnology, 17(1), 1–9.
- Hoffmann, J., Berni, R., Hausman, J.-F., & Guerriero, G. (2020). A review on the beneficial role of silicon against salinity in non-accumulator crops: Tomato as a model. Biomolecules, 10(9), 1284.
- Jana, G. A., Al Kharusi, L., Sunkar, R., Al-Yahyai, R., & Yaish, M. W. (2019). Metabolomic analysis of date palm seedlings exposed to salinity and silicon treatments. Plant Signaling & Behavior, 14(11), 1663112.
- Jia, J., Liang, Y., Gou, T., Hu, Y., Zhu, Y., Huo, H., ... & Gong, H. (2020). The expression response of plasma membrane aquaporins to salt stress in tomato plants. Environmental and Experimental Botany, 178, 104190.
- Kalteh, M., Alipour, Z. T., Ashraf, S., Aliabadi, M. M., & Nosratabadi, A. F. (2018). Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. Journal of Chemical Health Risks, 4(3).
- Kaur, N., Alok, A., Kaur, N., Pandey, P., Awasthi, P., & Tiwari, S. (2018). CRISPR/Cas9-mediated efficient editing in phytoene desaturase (PDS) demonstrates precise manipulation in banana cv. Rasthali genome. Functional & Integrative Genomics, 18(1), 89–99.
- Khan, A., Khan, A. L., Muneer, S., Kim, Y.-H., Al-Rawahi, A., & Al-Harrasi, A. (2019). Silicon and salinity: Cross-talk in crop mediated stress tolerance mechanisms. Frontiers in Plant Science, 10, 1429.
- Mahmoud, L. M., Dutt, M., Vincent, C. I., & Grosser, J. W. (2020c). Salinity-induced physiological responses of three putative salt tolerant citrus rootstocks. Horticulturae, 6(4), 90.
- Mahmoud, L. M., Dutt, M., Shalan, A. M., El-Kady, M. E., El-Boray, M. S., Shabana, Y. M., & Grosser, J. W. (2020b). Silicon nanoparticles mitigate oxidative stress of in vitro-derived banana (Musa acuminata ‘Grand Nain’) under simulated water deficit or salinity stress. South African Journal of Botany, 132, 155–163.
- Manivannan, A., Soundararajan, P., Arum, L. S., Ko, C. H., Muneer, S., & Jeong, B. R. (2015). Silicon-mediated enhancement of physiological and biochemical characteristics of Zinnia elegans grown under salinity stress. Horticulture, Environment, and Biotechnology, 56(6), 721–731.
- Naim, F., Dugdale, B., Kleidon, J., Brinin, A., Shand, K., Waterhouse, P., & Dale, J. (2018). Gene editing the phytoene desaturase alleles of Cavendish banana using CRISPR/Cas9. Transgenic Research, 27(5), 451–460.
- Nakajima, I., Ban, Y., Azuma, A., Onoue, N., Moriguchi, T., Yamamoto, T., Toki, S., & Endo, M. (2017). CRISPR/Cas9-mediated targeted mutagenesis in grape. PLoS One, 12(5), e0177966.
- Nishitani, C., Hirai, N., Komori, S., Wada, M., Okada, K., Osakabe, K., Yamamoto, T., & Osakabe, Y. (2016). Efficient genome editing in apple using a CRISPR/Cas9 system. Scientific Reports, 6, 31481.
- Nourozi, E., Hosseini, B., Maleki, R., & Mandoulakani, B. A. (2019). Phenolic compounds overproduction and gene expression in Dracocephalum kotschyi hairy roots elicited by SiO₂ nanoparticles. Industrial Crops and Products, 133, 435–446.
- Piero, A. R. L. (2020). Abiotic stress resistance. In The Citrus Genome (pp. 225–243). Springer.
- Qiu, W., Soares, J., Pang, Z., Huang, Y., Sun, Z., Wang, N., Grosser, J., & Dutt, M. (2020). Potential mechanisms of AtNPR1 mediated resistance against Huanglongbing (HLB) in citrus. International Journal of Molecular Sciences, 21(6), 2009.
- Rani, R., Yadav, P., Barbadikar, K. M., Baliyan, N., Malhotra, E. V., Singh, B. K., ... & Singh, D. (2016). CRISPR/Cas9: A promising way to exploit genetic variation in plants. Biotechnology Letters, 38(12), 1991–2006.
- Romero-Romero, J. L., Inostroza-Blancheteau, C., Reyes-Díaz, M., Matte, J. P., Aquea, F., Espinoza, C., Gil, P. M., & Arce-Johnson, P. (2020). Increased drought and salinity tolerance in Citrus aurantifolia plants overexpressing Arabidopsis CBF3 gene. Journal of Soil Science and Plant Nutrition, 20(1), 244–252.
- Seo, S. Y., Wi, S. J., & Park, K. Y. (2020). Functional switching of NPR1 between chloroplast and nucleus for adaptive response to salt stress. Scientific Reports, 10(1), 1–10.
- Shameli, K., Ahmad, M. B., Shabanzadeh, P., Al-Mulla, E. A. J., Zamanian, A., Abdollahi, Y., ... & Haroun, R. Z. (2014). Effect of Curcuma longa tuber powder extract on size of silver nanoparticles prepared by green method. Research on Chemical Intermediates, 40(3), 1313–1325.
- Soundararajan, P., Manivannan, A., Park, Y. G., Muneer, S., & Jeong, B. R. (2015). Silicon alleviates salt stress by modulating antioxidant enzyme activities in Dianthus caryophyllus. Horticulture, Environment, and Biotechnology, 56(2), 233–239.
- Spinoso-Castillo, J., Chavez-Santoscoy, R., Bogdanchikova, N., Pérez-Sato, J., Morales-Ramos, V., & Bello-Bello, J. (2017). Antimicrobial and hormetic effects of silver nanoparticles on vanilla in vitro regeneration. Plant Cell, Tissue and Organ Culture, 129(2), 195–207.
- Steinitz, B., Barr, N., Tabib, Y., Vaknin, Y., & Bernstein, N. (2010). Control of in vitro rooting in Corymbia maculata by silver nitrate and silver thiosulfate. Plant Cell Reports, 29(11), 1315–1323.
- Vincent, C., Rowland, D., Schaffer, B., Bassil, E., Racette, K., & Zurweller, B. (2020). Primed acclimation: A strategy for resilient and irrigation-efficient crop production. Plant Science, 295, 110240.
- Wang, N. (2019). The citrus huanglongbing crisis and potential solutions. Molecular Plant, 12(5), 607–609.
- Wilson, F. M., Harrison, K., Armitage, A. D., Simkin, A. J., & Harrison, R. J. (2019). CRISPR/Cas9-mediated mutagenesis in diploid and octoploid strawberry. Plant Methods, 15(1), 1–13.
- Wu, H., Acanda, Y., Canton, M., & Zale, J. (2019). Efficient biolistic transformation of citrus using phosphomannose-isomerase selection. Plants, 8(10), 390.
- Zhang, F., LeBlanc, C., Irish, V. F., & Jacob, Y. (2017). CRISPR/Cas9 gene editing in Citrus using the YAO promoter. Plant Cell Reports, 36(12), 1883–1887.
- Zhu, C., Zheng, X., Huang, Y., Ye, J., Chen, P., Zhang, C., ... & Wang, N. (2019). Genome sequencing and CRISPR/Cas9 gene editing of Mini-Citrus (Fortunella hindsii). Plant Biotechnology Journal, 17(11), 2199–2210.
- Zhu, Y.-X., Gong, H.-J., & Yin, J.-L. (2019). Role of silicon in mediating salt tolerance in plants: A review. Plants, 8(6), 147.