Main Article Content

Authors

Shivam Patel

Dr. P.K. Chamadia

Abstract

The Earth’s geomagnetic field serves as a crucial protective barrier, shielding the planet from the potentially hazardous effects of solar and cosmic radiation. Despite its stabilizing presence, this magnetic shield is highly dynamic and susceptible to disturbances originating from solar and interplanetary phenomena. These disturbances often manifest as geomagnetic storms, which can have serious implications for technological infrastructure, including satellite integrity, communication and navigation systems, and ground-based power grids. This review provides a comprehensive synthesis of historical and contemporary research that explores the intricate pathways through which solar activity particularly Coronal Mass Ejections (CMEs), solar flares, and high-speed solar wind streams interacts with the interplanetary magnetic field (IMF) and subsequently with the Earth’s magnetosphere. Central to this interaction is the process of magnetic reconnection, especially when the IMF exhibits a southward Bz component, which enhances the coupling between solar and terrestrial magnetic fields and triggers energy transfer into the magnetosphere. These interactions are quantitatively assessed using geomagnetic indices such as the Dst (Disturbance Storm Time) index, the Kp index, and the AE (Auroral Electrojet) index, which offer measurable proxies for storm intensity and auroral activity. Furthermore, statistical analyses conducted across solar cycles 24 and 25 have provided critical insights into long term solar-terrestrial dynamics, revealing patterns and thresholds associated with storm onset and severity. The review also highlights the evolution of space weather forecasting methodologies, noting a growing shift towards machine learning and data-driven models that can integrate multi-parametric solar, interplanetary, and geomagnetic data to enhance prediction accuracy. As space weather events pose increasing risks in a technologically dependent world, understanding and forecasting geomagnetic disturbances remain pivotal scientific and operational priorities.

Downloads

Download data is not yet available.

Article Details

Section

Articles

References

  1. Akasofu, S.-I. (1963). The development of the auroral substorm. Planetary and Space Science, 11(1), 273–282.
  2. Baumann, D., & McCloskey, J. (2021). Predicting solar wind propagation time using machine learning models. Space Weather Journal, 19(3), 1–12.
  3. Burton, R. K., McPherron, R. L., & Russell, C. T. (1975). An empirical relationship between interplanetary conditions and Dst. Journal of Geophysical Research, 80(31), 4204–4214.
  4. Carrington, R. C. (1859). Description of a singular appearance seen in the sun on September 1, 1859. Monthly Notices of the Royal Astronomical Society, 20, 13–15.
  5. Chapman, S., & Ferraro, V. C. A. (1931). A new theory of magnetic storms. Terrestrial Magnetism and Atmospheric Electricity, 36(2), 77–97.
  6. Daglis, I. A., Thorne, R. M., Baumjohann, W., & Orsini, S. (1999). The terrestrial ring current: Origin, formation, and decay. Reviews of Geophysics, 37(4), 407–438.
  7. Dungey, J. W. (1961). Interplanetary magnetic field and the auroral zones. Physical Review Letters, 6(2), 47–48.
  8. Eastwood, J. P., Horne, R. B., & Hudson, M. K. (2017). The science of space weather. Philosophical Transactions of the Royal Society A, 375(2097), 1–18.
  9. Feynman, J., & Gabriel, S. B. (2000). On space weather consequences and predictions. Journal of Geophysical Research: Space Physics, 105(A5), 10543–10564.
  10. Gopalswamy, N., Yashiro, S., Michalek, G., & Howard, R. A. (2007). Solar cycle variation of coronal mass ejection geoeffectiveness. Geophysical Research Letters, 34(L22), 1–5.
  11. Gosling, J. T. (1993). The solar flare myth. Journal of Geophysical Research, 98(A11), 18937–18950.
  12. Gosling, J. T., & Pizzo, V. J. (1999). Formation and evolution of corotating interaction regions and their three-dimensional structure. Space Science Reviews, 89(1–2), 21–52.
  13. Gonzalez, W. D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B. T., & Vasyliunas, V. M. (1994). What is a geomagnetic storm? Journal of Geophysical Research, 99(A4), 5771–5792.
  14. Gonzalez, W. D., & Tsurutani, B. T. (1987). Criteria of interplanetary parameters causing intense magnetic storms. Planetary and Space Science, 35(9), 1101–1109.
  15. Harrison, R. A. (1995). The nature of solar flares associated with coronal mass ejections. Astronomy and Astrophysics, 304, 585–594.
  16. Kahler, S. W. (1992). Solar flares and coronal mass ejections. Annual Review of Astronomy and Astrophysics, 30, 113–141.
  17. Kamide, Y., & Maltsev, Y. P. (2007). Geomagnetic storms: Historical perspective to recent studies. Journal of Geophysical Research, 112, A09213.
  18. Kane, R. P. (2005). Differences in geomagnetic storm response related to solar wind parameters. Journal of Atmospheric and Solar-Terrestrial Physics, 67(4), 429–438.
  19. Kilpua, E. K. J., Balogh, A., von Steiger, R., & Liu, Y. D. (2017). Geoeffective properties of solar transients. Space Science Reviews, 212(3), 1271–1314.
  20. Lakhina, G. S., Alex, S., & Tsurutani, B. T. (2006). Super geomagnetic storms: How super are they? Current Science, 90(12), 1607–1613.
  21. Li, M., & Guan, H. (2021). Event detection in solar time series using unsupervised learning. Space Weather and Radiation Environment, 5(1), 49–57.
  22. Lugaz, N., Farrugia, C. J., Manchester, W. B., & Schwadron, N. A. (2016). Earth’s worst geomagnetic storms. Journal of Geophysical Research: Space Physics, 121(11), 10,460–10,479.
  23. Nguyen, Q. M., Lee, J., & Kim, R. S. (2019). Comparison of solar cycles 23, 24, and early 25. Solar Physics, 294(10), 139–152.
  24. O’Brien, T. P., & McPherron, R. L. (2000). Forecasting the ring current Dst index. Journal of Atmospheric and Solar-Terrestrial Physics, 62(14), 1295–1309.
  25. Parker, E. N. (1958). Dynamics of the interplanetary gas and magnetic fields. Astrophysical Journal, 128, 664–676.
  26. Pesnell, W. D. (2018). Predictions of solar cycle 25. Space Weather, 16(11), 1997–2000.
  27. Pulkkinen, A. (2007). Space weather: Terrestrial perspective. Living Reviews in Solar Physics, 4(1), 1–60.
  28. Rawat, R., Singh, R., & Singh, A. K. (2009). Geoeffectiveness of coronal mass ejections during solar cycle 23. Indian Journal of Radio and Space Physics, 38, 217–225.
  29. Reiss, M. A., MacNeice, P., Temmer, M., & Veronig, A. M. (2021). Machine learning for solar wind forecasting. Frontiers in Astronomy and Space Sciences, 8, 42–54.
  30. Richardson, I. G., & Cane, H. V. (2010). Near-earth interplanetary coronal mass ejections during solar cycle 23. Solar Physics, 264(1), 189–237.
  31. Russell, C. T., & McPherron, R. L. (1973). Semiannual variation of geomagnetic activity. Journal of Geophysical Research, 78(1), 92–108.
  32. Schrijver, C. J., & Siscoe, G. L. (2010). Heliophysics: Space Storms and Radiation. Cambridge University Press.
  33. Siscoe, G. L., Crooker, N. U., & Clauer, C. R. (2005). Dst of the Carrington storm of 1859. Advances in Space Research, 38(2), 173–179.
  34. Singh, A. K., Singh, R., & Singh, R. P. (2010). Space weather: Earth’s magnetosphere and ionosphere. Indian Journal of Radio and Space Physics, 39, 217–223.
  35. Smith, E. J., & Wolfe, J. H. (1976). Observations of interaction regions and corotating shocks. Geophysical Research Letters, 3(3), 137–140.
  36. Tsurutani, B. T., & Gonzalez, W. D. (1997). The interplanetary causes of magnetic storms. Geophysical Monograph Series, 98, 77–89.
  37. Tsurutani, B. T., Gonzalez, W. D., Gonzalez, A. L. C., Tang, F., Arballo, J. K., & Okada, M. (1995). Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle. Journal of Geophysical Research, 100(A11), 21717–21734.
  38. Tsurutani, B. T., Gonzalez, W. D., Tang, F., & Lee, Y. T. (1992). Great magnetic storms. Geophysical Research Letters, 19(1), 73–76.
  39. Tsurutani, B. T., McPherron, R. L., Gonzalez, W. D., & Lu, G. (2006). Magnetic storms caused by corotating solar wind streams. Journal of Geophysical Research, 111(A7), A07S01.
  40. Turner, N. E., Baker, D. N., Pulkkinen, T. I., & McPherron, R. L. (2001). Evaluation of the Dst index for estimating ring current energy. Journal of Geophysical Research, 106(A5), 8471–8478.
  41. Vasyliunas, V. M. (2011). The physics of space weather. Reports on Progress in Physics, 74(3), 036901.
  42. Wang, Y. M., Ye, P. Z., & Wang, S. (2003). Multiple magnetic clouds. Solar Physics, 211(1), 333–344.
  43. Webb, D. F., & Howard, R. A. (1994). The solar cycle variation of coronal mass ejections and the solar wind mass flux. Journal of Geophysical Research, 99(A3), 4201–4220.
  44. Young, M. D., Barta, M., & Burke, W. J. (2015). Machine learning for pattern recognition in solar time series. Space Weather and Satellite Communications, 13(4), 166–179.
  45. Zhang, J., Dere, K. P., Howard, R. A., & Vourlidas, A. (2003). A study of the kinematic evolution of CMEs. Astrophysical Journal, 582(1), 520–533.
  46. Zhao, X. P., & Hoeksema, J. T. (1996). Effect of coronal mass ejections on geomagnetic storms. Solar Physics, 165(2), 391–406.
  47. Zhou, Y. F., & Tsurutani, B. T. (1999). Interplanetary causes of magnetic storms. Space Science Reviews, 88(1), 77–84.