Main Article Content

Authors

Mohit Kumar

Dr. Naveen Kumar

Abstract

The effectiveness of counters in the public service sector is of critical importance in ensuring that people get services in a timely manner and to their satisfaction. Waiting line theory, which is a mathematical study of waiting lines, provides useful tools for analyzing, designing, and optimizing service systems in situations where the arrival of customers and the procedures involved in providing service are intrinsically unpredictable. The purpose of this research is to investigate the use of queuing theory models, such as M/M/1, M/M/c, and limited capacity systems, in a variety of public service contexts. These settings include government offices, banks, hospitals, and transportation hubs. The use of these models allows the study to identify important performance indicators such as the average waiting time, the length of the line, and the usage of the system. Additionally, the research provides solutions to reduce delays and improve the efficiency of service. The research reveals, via the use of simulation and real-time case studies, how queue management strategies, when based on queuing theory, have the potential to greatly enhance service quality, minimize operational bottlenecks, and contribute to improved resource allocation. Not only do the results shed light on the practical consequences of mathematical modeling in public administration, but they also provide advice to policymakers and managers on how to integrate data-driven decision-making in service delivery.

Downloads

Download data is not yet available.

Article Details

Section

Articles

References

  1. Gross, D., Shortle, J. F., Thompson, J. M., & Harris, C. M. (2018). Fundamentals of Queueing Theory (5th ed.). Wiley.
  2. Kleinrock, L. (1975). Queueing Systems, Volume 1: Theory. Wiley-Interscience.
  3. Cooper, R. B. (1981). Introduction to Queueing Theory (2nd ed.). North Holland.
  4. Bhat, U. N. (2015). An Introduction to Queueing Theory: Modeling and Analysis in Applications. Birkhäuser.
  5. Medhi, J. (2002). Stochastic Models in Queueing Theory. Academic Press.
  6. Akbaş, F., & Özer, Ö. (2016). Queueing theory applications in healthcare: A literature review. Journal of Health Management, 18(3), 367–386.
  7. Gupta, D., & Denton, B. (2008). Appointment scheduling in health care: Challenges and opportunities. IIE Transactions, 40(9), 800–819.
  8. Bekker, R., & Koeleman, P. M. (2011). Handling appointment no-shows in reservation planning. Health Care Management Science, 14(2), 173–186.
  9. Duguay, C., & Chetouane, F. (2007). Modeling and improving emergency department systems using discrete event simulation. Simulation, 83(4), 311–320.
  10. Green, L. V. (2006). Queueing analysis in healthcare. In Patient Flow: Reducing Delay in Healthcare Delivery, 281–307.
  11. Jun, J. B., Jacobson, S. H., & Swisher, J. R. (1999). Application of discrete-event simulation in health care clinics: A survey. Journal of the Operational Research Society, 50(2), 109–123.
  12. Vass, C., & Szabo, I. (2021). Simulation of queuing systems in the public sector. Journal of Public Administration and Policy Research, 13(1), 10–17.
  13. Aringhieri, R., et al. (2015). Emergency medical services and beyond: Addressing new challenges through a wide literature review. Computers & Operations Research, 61, 122–133.
  14. Gunal, M. M., & Pidd, M. (2010). Discrete event simulation for performance modelling in health care: A review of the literature. Journal of Simulation, 4(1), 42–51.
  15. Paul, S. A., et al. (2010). Improving patient flow in emergency departments. Health Care Management Review, 35(3), 227–238.
  16. OECD. (2010). Public Administration after “New Public Management.” OECD Publishing.
  17. Indian Institute of Public Administration (IIPA). (2019). Public Service Delivery in India: Efficiency and Transparency. IIPA Policy Brief.
  18. Government of India. (2022). Digital India Annual Report 2021-2022. Ministry of Electronics and IT.
  19. UNDP. (2020). Effective Public Service Delivery through Digital Governance. United Nations Development Programme India.
  20. Agarwal, S., & Sinha, D. (2020). e-Governance and service delivery: A case of digital counters in India. International Journal of Public Sector Management, 33(7), 801–815.
  21. Choudhury, G. (2002). Analysis of M/M/1/N queue with server breakdown and delayed repair. Queueing Systems, 40(2), 183–206.
  22. Manataki, A., & Simon, H. (2017). Queuing theory and patient flow in hospitals: A literature review. Operations Research for Health Care, 15, 34–39.
  23. Wang, P. P., & Tang, J. (2011). Service time distributions in M/G/1 queues. Journal of Industrial and Management Optimization, 7(2), 273–289.
  24. Erdem, E., & Öztürk, M. (2017). A queuing theory-based model for workload analysis in public service counters. Operations Research Letters, 45(5), 457–462.
  25. Ramakrishnan, R., & Selvaraj, A. (2014). Optimization of service counters using queuing model. International Journal of Management Research and Reviews, 4(3), 330–335.
  26. Kettunen, P., & Kallio, J. (2019). Digital transformation of the public sector: A comparative analysis. Government Information Quarterly, 36(3), 101398.
  27. Dwivedi, Y. K., et al. (2017). Research on information systems failures and successes: Status update and future directions. Information Systems Frontiers, 19(2), 351–376.
  28. Sharma, A., & Tripathi, S. (2018). A framework for measuring public service quality using queuing models. Public Administration Review, 78(2), 243–254.
  29. Banerjee, P., & Singh, K. (2021). Role of data analytics in governance: Indian experiences. Data & Policy, 3, e12.
  30. World Bank. (2020). Improving Public Sector Performance: Through Innovation and Inter-Agency Collaboration. Washington, DC: World Bank Publications.