Exploring the Role of the AtNPR1 Gene in Mechanisms of Salt Stress Tolerance
Main Article Content
Authors
Abstract
Salt stress is one of the major abiotic factors limiting plant growth and productivity worldwide. Understanding the molecular mechanisms underlying salt tolerance is crucial for developing stress-resilient crops. The AtNPR1 (Nonexpressor of Pathogenesis-Related Genes 1) gene, widely recognized for its pivotal role in systemic acquired resistance and defense signaling in Arabidopsis thaliana, has recently been implicated in abiotic stress responses, including salinity. This study aims to investigate the functional role of AtNPR1 in modulating salt stress tolerance mechanisms. Through a combination of genetic, physiological, and molecular analyses, we explore how AtNPR1 influences plant responses under high salinity conditions. Preliminary findings suggest that AtNPR1 may regulate reactive oxygen species (ROS) scavenging, ion homeostasis, and stress-responsive gene expression, thereby enhancing plant tolerance to salt-induced oxidative damage. The study also examines cross-talk between biotic and abiotic stress pathways mediated by AtNPR1, highlighting its potential as a key regulatory hub. These insights could contribute to the development of genetically engineered crops with improved resilience to salt stress, offering a promising approach for sustainable agriculture under changing environmental conditions.
Downloads
Article Details
Section
References
- Achor, D., Welker, S., Ben-Mahmoud, S., Wang, C., Folimonova, S. Y., Dutt, M., Gowda, S., & Levy, A. (2020). Dynamics of Candidatus Liberibacter asiaticus movement and sieve-pore plugging in citrus sink cells. Plant Physiology, 182(2), 882–891.
- Al Murad, M., Khan, A. L., & Muneer, S. (2020). Silicon in horticultural crops: Cross-talk, signaling, and tolerance mechanism under salinity stress. Plants, 9(4), 460.
- Albrecht, U., Fiehn, O., & Bowman, K. D. (2016). Metabolic variations in different citrus rootstock cultivars associated with different responses to Huanglongbing. Plant Physiology and Biochemistry, 107, 33–44.
- Alvarez-Gerding, X., Espinoza, C., Inostroza-Blancheteau, C., & Arce-Johnson, P. (2015). Molecular and physiological changes in response to salt stress in Citrus macrophylla W plants overexpressing Arabidopsis CBF3/DREB1A. Plant Physiology and Biochemistry, 92, 71–80.
- Avestan, S., Ghasemnezhad, M., Esfahani, M., & Byrt, C. S. (2019). Application of nano-silicon dioxide improves salt stress tolerance in strawberry plants. Agronomy, 9(5), 246.
- Baek, D., Kim, M. C., Kumar, D., Park, B., Cheong, M. S., Choi, W., Park, H. C., Chun, H. J., Park, H. J., & Lee, S. Y. (2019). AtPR5K2, a PR5-like receptor kinase, modulates plant responses to drought stress by phosphorylating protein phosphatase 2Cs. Frontiers in Plant Science, 10, 1146.
- Bassil, E., Tajima, H., Liang, Y. C., Ohto, M. A., Ushijima, K., Nakano, R., Esumi, T., Coku, A., Belmonte, M., & Blumwald, E. (2011). The Arabidopsis Na+/H+ antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction. The Plant Cell, 23(9), 3482–3497.
- Cao, B., Ma, Q., Zhao, Q., Wang, L., & Xu, K. (2015). Effects of silicon on absorbed light allocation, antioxidant enzymes, and ultrastructure of chloroplasts in tomato leaves under simulated drought stress. Scientia Horticulturae, 194, 53–60.
- Charrier, A., Vergne, E., Dousset, N., Richer, A., Petiteau, A., & Chevreau, E. (2019). Efficient targeted mutagenesis in apple and first-time edition of pear using the CRISPR-Cas9 system. Frontiers in Plant Science, 10, 40.
- Dutt, M., Barthe, G., Irey, M., & Grosser, J. (2015). Transgenic citrus expressing an Arabidopsis NPR1 gene exhibit enhanced resistance against Huanglongbing (HLB; citrus greening). PloS One, 10(9), e0137134.
- Dutt, M., Erpen, L., & Grosser, J. W. (2018). Genetic transformation of the ‘W. Murcott’ tangor: Comparison between different techniques. Scientia Horticulturae, 242, 90–94.
- El-Mahdy, M. T., & Youssef, M. (2019). Genetic homogeneity and high shoot proliferation in banana (Musa acuminata Colla) by altering medium thiamine level and sugar type. In Vitro Cellular & Developmental Biology-Plant, 55(6), 668–677.
- Erpen, L., Devi, H. S., Grosser, J. W., & Dutt, M. (2018). Potential use of the DREB/ERF, MYB, NAC and WRKY transcription factors to improve abiotic and biotic stress in transgenic plants. Plant Cell, Tissue and Organ Culture, 132(1), 1–25.
- Farhangi-Abriz, S., & Torabian, S. (2018). Nano-silicon alters antioxidant activities of soybean seedlings under salt toxicity. Protoplasma, 255(3), 953–962.
- Fister, A. S., Landherr, L., Maximova, S. N., & Guiltinan, M. J. (2018). Transient expression of CRISPR/Cas9 machinery targeting TcNPR3 enhances defense response in Theobroma cacao. Frontiers in Plant Science, 9, 268.
- Gong, Z., Chinnusamy, V., & Zhu, J. K. (2018). The molecular networks of abiotic stress signaling. Annual Plant Reviews Online, 33, 388–416.
- Guo, W., Wu, Q., Yang, L., Hu, W., & Liu, Y. (2020). Ectopic expression of CsKCS6 from navel orange promotes the production of very-long-chain fatty acids (VLCFAs) and increases the abiotic stress tolerance of Arabidopsis thaliana. Frontiers in Plant Science, 11, 158.
- Hussain, S., Khalid, M. F., Saqib, M., Ahmad, S., Zafar, W., Rao, M. J., Morillon, R., & Anjum, M. A. (2018). Drought tolerance in citrus rootstocks is associated with better antioxidant defense mechanism. Acta Physiologiae Plantarum, 40(8), 135.
- Jia, J., Liang, Y., Gou, T., Hu, Y., Zhu, Y., Huo, H., Guo, J., & Gong, H. (2020). The expression response of plasma membrane aquaporins to salt stress in tomato plants. Environmental and Experimental Botany, 178, 104190.
- Jia, H., Orbovic, V., Jones, J. B., & Wang, N. (2016). Modification of the PthA4 effector binding elements in Type I CsLOB1 promoter using Cas9/sgRNA to produce transgenic Duncan grapefruit alleviating XccΔpthA4:dCsLOB1.3 infection. Plant Biotechnology Journal, 14(5), 1291–1301.
- Khan, A., Khan, A. L., Muneer, S., Kim, Y. H., Al-Rawahi, A., & Al-Harrasi, A. (2019). Silicon and salinity: Cross-talk in crop mediated stress tolerance mechanisms. Frontiers in Plant Science, 10, 1429.
- Khoshbakht, D., Asghari, M., & Haghighi, M. (2018). Effects of foliar applications of nitric oxide and spermidine on chlorophyll fluorescence, photosynthesis and antioxidant enzyme activities of citrus seedlings under salinity stress. Photosynthetica, 56(4), 1313–1325.
- Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25(4), 402–408.
- Mahmoud, L. M., Dutt, M., Vincent, C. I., & Grosser, J. W. (2020). Salinity-induced physiological responses of three putative salt tolerant citrus rootstocks. Horticulturae, 6(4), 90.
- Mahmoud, L. M., Dutt, M., Shalan, A. M., El-Kady, M. E., El-Boray, M. S., Shabana, Y. M., & Grosser, J. W. (2020). Silicon nanoparticles mitigate oxidative stress of in vitro-derived banana (Musa acuminata ‘Grand Nain’) under simulated water deficit or salinity stress. South African Journal of Botany, 132, 155–163.
- Qiu, W., Soares, J., Pang, Z., Huang, Y., Sun, Z., Wang, N., Grosser, J., & Dutt, M. (2020). Potential mechanisms of AtNPR1-mediated resistance against Huanglongbing (HLB) in citrus. International Journal of Molecular Sciences, 21(6), 2009.
- Romero-Romero, J. L., Inostroza-Blancheteau, C., Reyes-Díaz, M., Matte, J. P., Aquea, F., Espinoza, C., Gil, P. M., & Arce-Johnson, P. (2020). Increased drought and salinity tolerance in Citrus aurantifolia (Mexican lemon) plants overexpressing Arabidopsis CBF3 gene. Journal of Soil Science and Plant Nutrition, 20(1), 244–252.
- Seo, S. Y., Wi, S. J., & Park, K. Y. (2020). Functional switching of NPR1 between chloroplast and nucleus for adaptive response to salt stress. Scientific Reports, 10(1), 1–10.
- Siddiqui, M. H., Al-Whaibi, M. H., Faisal, M., & Al Sahli, A. A. (2014). Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environmental Toxicology and Chemistry, 33(11), 2429–2437.
- Soundararajan, P., Manivannan, A., Park, Y. G., Muneer, S., & Jeong, B. R. (2015). Silicon alleviates salt stress by modulating antioxidant enzyme activities in Dianthus caryophyllus ‘Tula’. Horticulture, Environment, and Biotechnology, 56(2), 233–239.
- Steinitz, B., Barr, N., Tabib, Y., Vaknin, Y., & Bernstein, N. (2010). Control of in vitro rooting and plant development in Corymbia maculata by silver nitrate, silver thiosulfate and thiosulfate ion. Plant Cell Reports, 29(11), 1315–1323.
- Vincent, C., Rowland, D., Schaffer, B., Bassil, E., Racette, K., Zurweller, B., & Gomez-Cadenas, A. (2020). Primed acclimation: A physiological process offers a strategy for more resilient and irrigation-efficient crop production. Plant Science, 295, 110240.
- Wang, N. (2019). The citrus Huanglongbing crisis and potential solutions. Molecular Plant, 12(5), 607–609.
- Wilson, F. M., Harrison, K., Armitage, A. D., Simkin, A. J., & Harrison, R. J. (2019). CRISPR/Cas9-mediated mutagenesis of phytoene desaturase in diploid and octoploid strawberry. Plant Methods, 15(1), 1–13.
- Xu, Y., Hu, W., Liu, J., Zhang, J., Jia, C., Miao, H., Xu, B., & Jin, Z. (2014). A banana aquaporin gene, MaPIP1;1, is involved in tolerance to drought and salt stresses. BMC Plant Biology, 14, 59.
- Yan, G., Fan, X., Peng, M., Yin, C., Xiao, Z., & Liang, Y. (2020). Silicon improves rice salinity resistance by alleviating ionic toxicity and osmotic constraint in an organ-specific pattern. Frontiers in Plant Science, 11, 260.
- Yang, Q., Chen, Z. Z., Zhou, X. F., Yin, H. B., Li, X., Xin, X. F., Hong, X. H., Zhu, J. K., & Gong, Z. (2009). Overexpression of SOS genes increases salt tolerance in transgenic Arabidopsis. Molecular Plant, 2(1), 22–31.
- Yu, D., Chen, C., & Chen, Z. (2001). Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. The Plant Cell, 13(7), 1527–1540.
- Zhang, F., LeBlanc, C., Irish, V. F., & Jacob, Y. (2017). Rapid and efficient CRISPR/Cas9 gene editing in Citrus using the YAO promoter. Plant Cell Reports, 36(12), 1883–1887.
- Zhu, Y. X., Gong, H. J., & Yin, J. L. (2019). Role of silicon in mediating salt tolerance in plants: A review. Plants, 8(6), 147.