Main Article Content

Authors

Reeja P S

Dr. Dharmendra Saxena

Abstract

Fuzzy set theory extends traditional topological concepts through Fuzzy E-Open Sets and Fuzzy E-Continuity.   These sets, in conjunction with fuzzy e-open sets, are generalised variations of conventional topological sets such as β-, a-, and e-open sets.   Fuzzy and intuitionistic fuzzy e-open sets exhibit topological patterns, however their interrelations and behaviours may not consistently be reciprocal.  

Downloads

Download data is not yet available.

Article Details

Section

Articles

References

  1. Anjana Bhattacharyya and M. N. Mukherjee, On fuzzy δ-almost continuous and δ ∗-almost continuous functions, J. Tripura Math. Soc. 2 (2000) 45–57.
  2. K. K. Azad, On fuzzy semi continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981) 14–32.
  3. S. Bin Shahna, On fuzzy strong semi continuity and fuzzy precontinuity, Fuzzy Sets and Systems 44 (1991) 303–308.
  4. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182–190.
  5. S. Debnath, On fuzzyδ-semi continuous functions, Acta Cienc. Indica Math. 34(2) (2008) 697–703.
  6. Erdal Ekici, On e-open sets, DP*-sets and DPE*-sets and decompositions of continuity, Arabian J. Sci, 33 (2) (2008),269-282.
  7. Mukherjee and S. Debnath, δ-semi open sets in fuzzy setting, J. Tri. Math.Soc. 8 (2006) 51–54.
  8. T. Noiri and O. R. Sayed, Fuzzy γ-open sets and fuzzy γ-continuity in fuzzifying topology, Sci. Math. Jpn. 55 (2002) 255–263.
  9. R. Prasad, S. S. Thakur and R. K. Saraf, Fuzzy α-irresolute mappings, J. Fuzzy Math. 2(2) (1994) 335–339.
  10. N. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl. 78(2) (1968) 103–118.
  11. L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.
  12. C. Duraisamy and M. Dhavamani(2009), Intuitionistic slightly continuous functions, ActaCienciaIndica, Vol. XXXV M, No. 4, 1227.
  13. C. Duraisamy, M. Dhavamani and N. Rajesh (2007), Some non-continuous functions in intuitionstic topological spaces (submitted).
  14. ErdalEkici (2005), On fuzzy functions, Commun. Korean.Math. Soc., 20(4), 781-789.
  15. Erdal. Ekici and E. Kerre(2006), On fuzzy contra-continuities, Adv. Fuzzy Math., 1 (1), 35-44.
  16. E. Ekici(2007), Some generalizations of almost contra-super continuity, Filomat, 21 (2), 31-44.
  17. E. Ekici(2008), On e -open sets, DP∗ -sets and DPϵ ∗ -sets and decompositions of continuity, Arabian Journal for Science and Engineering, 33 (2A), 269- 282.
  18. E. Ekici(2008), New forms of contra-continuity, Carpathian Journal of Mathematics, bf 24 (1), 37-45.
  19. E. Ekici(2008), A note on a -open sets and e ∗ -open sets, Faculty of Sciences and Mathematics University of Nis, Serbia, Filo mat 22 (1), 89-96.
  20. E. Ekici(2009), One ∗ -open sets and (D, S )∗ -sets, MathematicalMoravica, 13 (1), 29-36.
  21. D. Coker(1996), An introduction to fuzzy subspaces in intuitionistic fuzzy topological spaces, J. Fuzzy Math. 4, no. 4, 749-764.
  22. D. Coker(1997), An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, 88, 81-89.
  23. D. Coker(2000), An introduction to intuitionistic topological spaces, Bulletin for Studies and Exchanges on Fuzziness and its Applications 81, 51-56.
  24. B. Bhattacharya and J. Chakraborty(2015), Generalized regular fuzzy closed sets and their applications, The Journal of Fuzzy Mathematics, 23 (1), 227–240.
  25. S. Bin Shaha(1991), On fuzzy strong semi-continuity and fuzzy precontinuity, Fuzzy Sets and Systems, 44 (2), 303-308.